Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Let x∉Qx \notin \mathbb{Q}x∈/Q. Prove by contradiction that ∣x∣∉Q|x| \notin \mathbb{Q}∣x∣∈/Q.
Given x∉Qx \notin \mathbb{Q}x∈/Q, prove by contradiction that 2x+1∉Q2x+1 \notin \mathbb{Q}2x+1∈/Q.
Given x∉Qx \notin \mathbb{Q}x∈/Q, prove by contradiction that 3−5x∉Q3 - 5x \notin \mathbb{Q}3−5x∈/Q.
Let x≠0x \ne 0x=0 be irrational. Prove by contradiction that 1x\dfrac{1}{x}x1 is irrational.
Let n∈Zn \in \mathbb{Z}n∈Z. Prove by contradiction that if n2n^2n2 is even, then nnn is even.
Let x∉Qx \notin \mathbb{Q}x∈/Q and r∈Q∖{0}r \in \mathbb{Q}\setminus\{0\}r∈Q∖{0}. Prove by contradiction that rx+5\dfrac{r}{x} + 5xr+5 is irrational.
Let r∈Q∖{0}r \in \mathbb{Q}\setminus\{0\}r∈Q∖{0}. If x∉Qx \notin \mathbb{Q}x∈/Q, prove by contradiction that xr∉Q\dfrac{x}{r} \notin \mathbb{Q}rx∈/Q.
Let a,b∈Qa,b \in \mathbb{Q}a,b∈Q with a≠0a \ne 0a=0. Given x∉Qx \notin \mathbb{Q}x∈/Q, prove by contradiction that ax+b∉Qax + b \notin \mathbb{Q}ax+b∈/Q.
Previous
Question Type 2: Using contradiction without conditions
Next
Question Type 4: Using induction for proving equalities