Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Let a=(1,0,1)a=(1,0,1)a=(1,0,1), b=(3,2,1)b=(3,2,1)b=(3,2,1), and c=(5,6,1)c=(5,6,1)c=(5,6,1). Compute c×ac\times ac×a.
Let a=(1,0,1)a=(1,0,1)a=(1,0,1), b=(3,2,1)b=(3,2,1)b=(3,2,1), and c=(5,6,1)c=(5,6,1)c=(5,6,1). Compute a×ba\times ba×b.
Let a=(1,0,1)a=(1,0,1)a=(1,0,1), b=(3,2,1)b=(3,2,1)b=(3,2,1), and c=(5,6,1)c=(5,6,1)c=(5,6,1). Compute b×cb\times cb×c.
Let a=(1,0,1)a=(1,0,1)a=(1,0,1), b=(3,2,1)b=(3,2,1)b=(3,2,1), and c=(5,6,1)c=(5,6,1)c=(5,6,1). Compute (a+b)×c(a+b)\times c(a+b)×c.
Let a=(1,0,1)a=(1,0,1)a=(1,0,1), b=(3,2,1)b=(3,2,1)b=(3,2,1), and c=(5,6,1)c=(5,6,1)c=(5,6,1). Compute (b−c)×a(b-c)\times a(b−c)×a.
Let a=(1,0,1)a=(1,0,1)a=(1,0,1), b=(3,2,1)b=(3,2,1)b=(3,2,1), and c=(5,6,1)c=(5,6,1)c=(5,6,1). Compute a×(b+c)a\times(b+c)a×(b+c).
Let a=(1,0,1)a=(1,0,1)a=(1,0,1), b=(3,2,1)b=(3,2,1)b=(3,2,1), and c=(5,6,1)c=(5,6,1)c=(5,6,1). Compute the scalar triple product a⋅(b×c)a\cdot(b\times c)a⋅(b×c).
Let a=(1,0,1)a=(1,0,1)a=(1,0,1), b=(3,2,1)b=(3,2,1)b=(3,2,1), and c=(5,6,1)c=(5,6,1)c=(5,6,1). Compute (2a+3b)×(b−c)(2a+3b)\times(b-c)(2a+3b)×(b−c).
Let a=(1,0,1)a=(1,0,1)a=(1,0,1), b=(3,2,1)b=(3,2,1)b=(3,2,1), and c=(5,6,1)c=(5,6,1)c=(5,6,1). Define u=a+2cu=a+2cu=a+2c and v=3b−av=3b - av=3b−a. Compute u×vu\times vu×v.
Let a=(1,0,1)a=(1,0,1)a=(1,0,1), b=(3,2,1)b=(3,2,1)b=(3,2,1), and c=(5,6,1)c=(5,6,1)c=(5,6,1). Compute (a×b)+(b×c)+(c×a).(a\times b)+(b\times c)+(c\times a).(a×b)+(b×c)+(c×a).
Let a=(1,0,1)a=(1,0,1)a=(1,0,1), b=(3,2,1)b=(3,2,1)b=(3,2,1), and c=(5,6,1)c=(5,6,1)c=(5,6,1). Verify the distributive law by simplifying (a+b)×(b+c)(a+b)\times(b+c)(a+b)×(b+c) and comparing with a×b+a×c+b×b+b×c.a\times b + a\times c + b\times b + b\times c.a×b+a×c+b×b+b×c.
Let a=(1,0,1)a=(1,0,1)a=(1,0,1), b=(3,2,1)b=(3,2,1)b=(3,2,1), and c=(5,6,1)c=(5,6,1)c=(5,6,1). Find a unit vector perpendicular to both (a+b)(a+b)(a+b) and (b+c)(b+c)(b+c).
Previous
Question Type 1: Finding the cross product of two vectors
Next
Question Type 3: Simplifying vector operations with dot and cross product