Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Rewrite the line given by the vector equation r=(−2−2−2)+t(134)\mathbf{r} = \begin{pmatrix} -2 \\ -2 \\ -2 \end{pmatrix} + t \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}r=−2−2−2+t134 in Cartesian form.
Rewrite the line given by the vector equation r=(7,2,−5)+t(3,−6,9)\mathbf{r}=(7,2,-5)+t(3,-6,9)r=(7,2,−5)+t(3,−6,9) in cartesian form.
Find the Cartesian equation of the line with vector equation r=(016)+k(421)\mathbf{r}=\begin{pmatrix} 0 \\ 1 \\ 6 \end{pmatrix} + k \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}r=016+k421
Rewrite the line given by the vector equation r=(1,0,2)+s(0,0,1)\mathbf{r}=(1,0,2)+s(0,0,1)r=(1,0,2)+s(0,0,1) in Cartesian form.
Rewrite the line given by the vector equation r=(4−13)+k(−230)\mathbf{r} = \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} + k \begin{pmatrix} -2 \\ 3 \\ 0 \end{pmatrix}r=4−13+k−230 in Cartesian form.
Rewrite the line given by the vector equation r=(000)+λ(1−23)\mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}r=000+λ1−23 in Cartesian form.
Rewrite the line given by the vector equation r=(500)+u(−121)\mathbf{r}=\begin{pmatrix} 5 \\ 0 \\ 0 \end{pmatrix}+u\begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}r=500+u−121 in Cartesian form.
Rewrite the line given by the vector equation r=(−142)+s(2−13)\mathbf{r} = \begin{pmatrix} -1 \\ 4 \\ 2 \end{pmatrix} + s \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}r=−142+s2−13 in Cartesian form.
Express the line given by the vector equation r=(2−35)+λ(30−2)\mathbf{r} = \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 0 \\ -2 \end{pmatrix}r=2−35+λ30−2 in Cartesian form.
Find the Cartesian equation of the line given by the vector equation r=(123)+t(456)\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}r=123+t456.
Rewrite the line given by the vector equation r=(330)+k(041)\mathbf{r} = \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix} + k \begin{pmatrix} 0 \\ 4 \\ 1 \end{pmatrix}r=330+k041 in Cartesian form.
Rewrite the line given by the vector equation r=(−1,0,4)+t(2,2,2)\mathbf{r}=(-1,0,4)+t(2,2,2)r=(−1,0,4)+t(2,2,2) in cartesian form.
Previous
Question Type 2: Verifying if a point lies on a line or not
Next
Question Type 4: Finding the angle between two lines using the direction vectors