Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Verify whether the point (2,1,3)(2,1,3)(2,1,3) lies on the line given by x−52=y−13=z\frac{x-5}{2}=\frac{y-1}{3}=z2x−5=3y−1=z
Check if the point (4,0,5)(4,0,5)(4,0,5) lies on the parametric line x=1+3t, y=−2+t, z=2−2tx=1+3t,\;y=-2+t,\;z=2-2tx=1+3t,y=−2+t,z=2−2t
Determine if the point (5,−1,7)(5,-1,7)(5,−1,7) lies on the line x+13=y−4−2=z−15\displaystyle\frac{x+1}{3}=\frac{y-4}{-2}=\frac{z-1}{5}3x+1=−2y−4=5z−1
Check if the point (−1,4,0)(-1,4,0)(−1,4,0) lies on the line given in parametric form by r=(2,1,−3)+t(1,2,1)\mathbf r=(2,1,-3)+t(1,2,1)r=(2,1,−3)+t(1,2,1)
Determine whether (−3,−1,7)(-3,-1,7)(−3,−1,7) lies on the line x+1−2=y−31=z−54\displaystyle\frac{x+1}{-2}=\frac{y-3}{1}=\frac{z-5}{4}−2x+1=1y−3=4z−5
Check if (7,−1,5)(7,-1,5)(7,−1,5) lies on the line x−34=y+2−1=z−12\displaystyle\frac{x-3}{4}=\frac{y+2}{-1}=\frac{z-1}{2}4x−3=−1y+2=2z−1
Is the point (−2,5,1)(-2,5,1)(−2,5,1) on the line y−22=z+1−3=x+41\displaystyle\frac{y-2}{2}=\frac{z+1}{-3}=\frac{x+4}{1}2y−2=−3z+1=1x+4? Verify.
Determine whether Q(3,3,3)Q(3,3,3)Q(3,3,3) lies on the line given by r=(1,2,1)+λ(2,1,4)\mathbf r=(1,2,1)+\lambda(2,1,4)r=(1,2,1)+λ(2,1,4)
Verify whether P(0,3,−2)P(0,3,-2)P(0,3,−2) lies on the line through A(2,1,0)A(2,1,0)A(2,1,0) and B(−1,4,2)B(-1,4,2)B(−1,4,2)
Verify that the point (2,−3,4)(2,-3,4)(2,−3,4) lies on the line defined by x=5−t, y=−1−2t, z=1+3tx=5-t,\;y=-1-2t,\;z=1+3tx=5−t,y=−1−2t,z=1+3t
Verify whether (4,6,8)(4,6,8)(4,6,8) lies on the line passing through (0,0,0)(0,0,0)(0,0,0) and (2,3,4)(2,3,4)(2,3,4)
Previous
Question Type 1: Given two points, finding the vector equation of a line
Next
Question Type 3: Rewriting a line from one form into another