Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Show that for any vectors u,v,w\mathbf{u},\mathbf{v},\mathbf{w}u,v,w in Rn\mathbb{R}^nRn, the following holds: ∣u+v+w∣2=∣u∣2+∣v∣2+∣w∣2+2(u⋅v+v⋅w+w⋅u).|\mathbf{u}+\mathbf{v}+\mathbf{w}|^2 = |\mathbf{u}|^2+|\mathbf{v}|^2+|\mathbf{w}|^2 + 2(\mathbf{u}\cdot\mathbf{v} + \mathbf{v}\cdot\mathbf{w} + \mathbf{w}\cdot\mathbf{u}).∣u+v+w∣2=∣u∣2+∣v∣2+∣w∣2+2(u⋅v+v⋅w+w⋅u).
Given two unit vectors u\mathbf{u}u and v\mathbf{v}v with u⋅v=12\mathbf{u}\cdot\mathbf{v}=\tfrac12u⋅v=21, compute ∣u+v∣2|\mathbf{u}+\mathbf{v}|^2∣u+v∣2.
If u⋅v=2\mathbf{u}\cdot\mathbf{v}=2u⋅v=2, ∣u∣=3|\mathbf{u}|=3∣u∣=3, and ∣v∣=4|\mathbf{v}|=4∣v∣=4, compute ∣u−v∣|\mathbf{u}-\mathbf{v}|∣u−v∣.
Vectors u\mathbf{u}u and v\mathbf{v}v satisfy ∣u∣=1|\mathbf{u}|=1∣u∣=1, ∣v∣=2|\mathbf{v}|=2∣v∣=2, and the angle between them is 60∘60^\circ60∘. Compute ∣u×v∣|\mathbf{u}\times\mathbf{v}|∣u×v∣.
Given nonzero vectors u\mathbf{u}u and v\mathbf{v}v with u⋅v=4\mathbf{u}\cdot\mathbf{v}=4u⋅v=4 and ∣v∣=5|\mathbf{v}|=\sqrt{5}∣v∣=5, find the magnitude of the projection of u\mathbf{u}u onto v\mathbf{v}v, i.e. ∣projvu∣.\bigl|\mathrm{proj}_{\mathbf{v}}\mathbf{u}\bigr|.projvu.
Let u\mathbf{u}u and v\mathbf{v}v be vectors with u⋅v=−13\mathbf{u}\cdot\mathbf{v}=-\tfrac13u⋅v=−31, ∣u∣=2|\mathbf{u}|=2∣u∣=2, and ∣v∣=3|\mathbf{v}|=3∣v∣=3. Find ∣u−v∣2|\mathbf{u}-\mathbf{v}|^2∣u−v∣2.
Let u,v,w\mathbf{u},\mathbf{v},\mathbf{w}u,v,w be unit vectors with u⋅v=0\mathbf{u}\cdot\mathbf{v}=0u⋅v=0, u⋅w=12\mathbf{u}\cdot\mathbf{w}=\tfrac12u⋅w=21, and v⋅w=0\mathbf{v}\cdot\mathbf{w}=0v⋅w=0. Find ∣u+v+w∣2|\mathbf{u}+\mathbf{v}+\mathbf{w}|^2∣u+v+w∣2.
In the plane, vectors u\mathbf{u}u and v\mathbf{v}v satisfy ∣u∣=5|\mathbf{u}|=5∣u∣=5, ∣v∣=7|\mathbf{v}|=7∣v∣=7, and u⋅v=14\mathbf{u}\cdot\mathbf{v}=14u⋅v=14. Find the area of the parallelogram determined by u\mathbf{u}u and v\mathbf{v}v.
Show that for any vectors u\mathbf{u}u and v\mathbf{v}v, the following identity holds: ∣u+v∣2+∣u−v∣2=2(∣u∣2+∣v∣2).|\mathbf{u}+\mathbf{v}|^2 + |\mathbf{u}-\mathbf{v}|^2 = 2\bigl(|\mathbf{u}|^2 + |\mathbf{v}|^2\bigr).∣u+v∣2+∣u−v∣2=2(∣u∣2+∣v∣2).
For two unit vectors u\mathbf{u}u and v\mathbf{v}v with angle θ\thetaθ between them, express ∣u+v∣|\mathbf{u}+\mathbf{v}|∣u+v∣ and ∣u−v∣|\mathbf{u}-\mathbf{v}|∣u−v∣ in terms of θ\thetaθ.
Prove the vector identity for any u,v∈R3\mathbf{u},\mathbf{v}\in\mathbb{R}^3u,v∈R3: ∣u×v∣2=∣u∣2 ∣v∣2−(u⋅v)2.|\mathbf{u}\times\mathbf{v}|^2 = |\mathbf{u}|^2\,|\mathbf{v}|^2 - (\mathbf{u}\cdot\mathbf{v})^2.∣u×v∣2=∣u∣2∣v∣2−(u⋅v)2.
Let u,v,w\mathbf{u},\mathbf{v},\mathbf{w}u,v,w satisfy ∣u∣2=∣v∣2=∣w∣2=4|\mathbf{u}|^2=|\mathbf{v}|^2=|\mathbf{w}|^2=4∣u∣2=∣v∣2=∣w∣2=4, u⋅v=1\mathbf{u}\cdot\mathbf{v}=1u⋅v=1, v⋅w=2\mathbf{v}\cdot\mathbf{w}=2v⋅w=2, and w⋅u=3\mathbf{w}\cdot\mathbf{u}=3w⋅u=3. Compute ∣u+v+w∣2|\mathbf{u}+\mathbf{v}+\mathbf{w}|^2∣u+v+w∣2.
Previous
Question Type 1: Finding the dot product between two vectors using different operations
Next
Question Type 3: Finding the angle between vectors