Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Solve the equation sec2x−tan2x=3\sec^2 x - \tan^2 x = 3sec2x−tan2x=3 for 0<x<π20 < x < \frac{\pi}{2}0<x<2π.
Solve the equation cosx=tanx\cos x = \tan xcosx=tanx for 0<x<π0 < x < \pi0<x<π.
Solve the equation sin2x=2cosx\sin 2x = 2\cos xsin2x=2cosx for 0<x<π0 < x < \pi0<x<π.
Solve the equation sinx=1secx\sin x = \frac{1}{\sec x}sinx=secx1 for 0≤x≤2π0 \le x \le 2\pi0≤x≤2π.
Solve the equation cscx−sinx=2\csc x - \sin x = 2cscx−sinx=2 for 0<x<π0 < x < \pi0<x<π.
Solve the equation 3secx−4cosx=03\sec x - 4\cos x = 03secx−4cosx=0 for 0≤x<2π0 \le x < 2\pi0≤x<2π.
Solve the equation 2sinx=secx2\sin x = \sec x2sinx=secx for 0<x<2π0 < x < 2\pi0<x<2π.
Solve the equation 4sin2x=πsec2x4\sin2x = \pi\sec2x4sin2x=πsec2x for 0<x<π20 < x < \frac{\pi}{2}0<x<2π.
Solve the equation secx+tanx=2\sec x + \tan x = 2secx+tanx=2 for 0≤x<2π0 \le x < 2\pi0≤x<2π.
Solve the equation cotx+tanx=1\cot x + \tan x = 1cotx+tanx=1 for 0<x<π20 < x < \frac{\pi}{2}0<x<2π.
Solve the equation 2cscx=sinx2\csc x = \sin x2cscx=sinx for 0<x<2π0 < x < 2\pi0<x<2π.
Solve the equation tanx=3cscx\tan x = 3\csc xtanx=3cscx for 0<x<π0 < x < \pi0<x<π.
Previous
Question Type 1: Solving trigonometric equations using reciprocal functions
Next
Question Type 3: Solving inverse trigonometric functions using the triangle method