Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Simplify the expression tan2x+1−sec2x\tan^2 x + 1 - \sec^2 xtan2x+1−sec2x.
Prove 1−sin2x=cos2x1 - \sin^2 x = \cos^2 x1−sin2x=cos2x.
Prove the identity 1+cot2x= csc2x1 + \cot^2 x = \,csc^2 x1+cot2x=csc2x.
Prove the Pythagorean identity 1+tan2x= sec2x1 + \tan^2 x = \,sec^2 x1+tan2x=sec2x.
Derive the identity tan2x=sec2x−1\tan^2 x = \sec^2 x - 1tan2x=sec2x−1.
Show that sec2x−tan2x=1\sec^2 x - \tan^2 x = 1sec2x−tan2x=1.
Using the Pythagorean identity, prove that 1cos2x−tan2x=1\frac{1}{\cos^2 x} - \tan^2 x = 1cos2x1−tan2x=1.
Show that 1+tan2x=sin2x+cos2xcos2x1 + \tan^2 x = \frac{\sin^2 x + \cos^2 x}{\cos^2 x}1+tan2x=cos2xsin2x+cos2x and hence simplify to a single trigonometric function.
Prove that csc2x−cot2x=1\csc^2 x - \cot^2 x = 1csc2x−cot2x=1.
Given tanx=ab\tan x = \frac{a}{b}tanx=ba for constants a,ba,ba,b, express secx\sec xsecx in terms of aaa and bbb.
Prove that (secx+tanx)(secx−tanx)=1(\sec x + \tan x)(\sec x - \tan x) = 1(secx+tanx)(secx−tanx)=1.
Derive the tangent addition formula tan(x+y)=tanx+tany1−tanxtany\tan(x+y)=\frac{\tan x + \tan y}{1 - \tan x\tan y}tan(x+y)=1−tanxtanytanx+tany by expressing in terms of sine and cosine.
Previous
Question Type 1: Rewriting values of sin and cos using the golden rule
Next
Question Type 3: Rewriting trigonometric equations using the double angle identities and golden rule