Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Derive the identity for sin(2θ)\sin(2\theta)sin(2θ) in terms of tanθ\tan\thetatanθ. Present the final expression as a function of tanθ\tan\thetatanθ.
Prove that cos(3θ)=4cos3θ−3cosθ.\cos(3\theta)=4\cos^3\theta-3\cos\theta.cos(3θ)=4cos3θ−3cosθ.
Rewrite the product sinθcos(3θ)\sin\theta\cos(3\theta)sinθcos(3θ) as a sum or difference of trigonometric functions using product-to-sum identities.
Using double-angle identities, derive an expression for sin(4θ)\sin(4\theta)sin(4θ) in terms of sinθ\sin\thetasinθ and cosθ\cos\thetacosθ.
Express sin2θ cos2θ\sin^2\theta\,\cos^2\thetasin2θcos2θ in terms of cos(4θ)\cos(4\theta)cos(4θ) and constants.
Express cos(2θ)\cos(2\theta)cos(2θ) using only sinθ\sin\thetasinθ.
Express cos(4θ)\cos(4\theta)cos(4θ) using only sinθ\sin\thetasinθ. Simplify your result.
Derive the identity for tan(2θ)\tan(2\theta)tan(2θ) in terms of tanθ\tan\thetatanθ only.
Express cos(4θ)\cos(4\theta)cos(4θ) using only cosθ\cos\thetacosθ. Provide the simplified polynomial form in cosθ\cos\thetacosθ.
Derive the double-angle identity for cos(2θ)\cos(2\theta)cos(2θ) in terms of cosθ\cos\thetacosθ. Provide a final expression involving only cosθ\cos\thetacosθ.
Previous
Question Type 2: Simple proofs with the golden rule
Next
Question Type 4: Finding one trigonometric value given another without finding angle