Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Show that 1āsinā”2x=cosā”2x1 - \sin^2 x = \cos^2 x1āsin2x=cos2x and use this to rewrite 8ā8sinā”2x8 - 8\sin^2 x8ā8sin2x in simplest form.
Express 5cosā”2x5\cos^2 x5cos2x in terms of sinā”x\sin xsinx.
Rewrite 3sinā”2x+7cosā”2x3\sin^2 x + 7\cos^2 x3sin2x+7cos2x solely in terms of sinā”2x\sin^2 xsin2x.
Simplify cosā”2xāsinā”2x+2sinā”xcosā”x\cos^2 x - \sin^2 x + 2\sin x\cos xcos2xāsin2x+2sinxcosx in terms of sinā”(2x)\sin(2x)sin(2x) or cosā”(2x)\cos(2x)cos(2x).
Simplify cosā”4xāsinā”4x\cos^4 x - \sin^4 xcos4xāsin4x and express your answer in terms of cosā”(2x)\cos(2x)cos(2x).
Rewrite 3sinā”x+4cosā”x3\sin x + 4\cos x3sinx+4cosx in the form Rsinā”(x+α)R\sin\bigl(x+\alpha\bigr)Rsin(x+α), where R>0R>0R>0 and 0<α<Ļ20<\alpha<\tfrac{\pi}{2}0<α<2Ļā.
Express sinā”2xāsinā”4x\sin^2 x - \sin^4 xsin2xāsin4x in terms of cosā”(2x)\cos(2x)cos(2x) and cosā”(4x)\cos(4x)cos(4x).
Simplify sinā”2xcosā”2x\sin^2 x \cos^2 xsin2xcos2x in terms of cosā”(4x)\cos(4x)cos(4x).
Express sinā”4x\sin^4 xsin4x in the form A+Bcosā”(2x)+Ccosā”(4x)A + B\cos(2x) + C\cos(4x)A+Bcos(2x)+Ccos(4x), and state A,B,CA,B,CA,B,C.
Simplify cosā”4x+sinā”4x\cos^4 x + \sin^4 xcos4x+sin4x in the form F+Gcosā”(4x)F + G\cos(4x)F+Gcos(4x).
Express 5sinā”2xā3cosā”2x5\sin^2 x - 3\cos^2 x5sin2xā3cos2x in the form D+Ecosā”(2x)D + E\cos(2x)D+Ecos(2x).
Evaluate ā«0Ļ25cosā”2xādx\displaystyle \int_{0}^{\frac{\pi}{2}}5\cos^2 x\,dxā«02Ļāā5cos2xdx by rewriting the integrand.
Previous
No previous topic
Next
Question Type 2: Simple proofs with the golden rule