Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Compute the dot product of the vectors u=(3,0,4)u=(3,0,4)u=(3,0,4) and v=(4,0,1)v=(4,0,1)v=(4,0,1).
Find the dot product of u=(−2,5,3)u=(-2,5,3)u=(−2,5,3) and v=(1,−4,2)v=(1,-4,2)v=(1,−4,2).
Given two vectors uuu and vvv satisfy ∣u∣=5|u|=5∣u∣=5, ∣v∣=7|v|=7∣v∣=7 and the angle between them is 60∘60^\circ60∘, find u⋅vu\cdot vu⋅v.
Compute the dot product of the four-dimensional vectors u=(1,2,3,4)u=(1,2,3,4)u=(1,2,3,4) and v=(0,−1,2,−3)v=(0,-1,2,-3)v=(0,−1,2,−3).
Find the dot product of the five-dimensional vectors u=(1,0,−2,3,1)u=(1,0,-2,3,1)u=(1,0,−2,3,1) and v=(2,1,0,−1,4)v=(2,1,0,-1,4)v=(2,1,0,−1,4).
Determine the value of λ\lambdaλ such that the vectors u=(1,λ,3)u=(1,\lambda,3)u=(1,λ,3) and v=(2,−1,4)v=(2,-1,4)v=(2,−1,4) are perpendicular.
Let u=(cosθ,sinθ)u=(\cos\theta,\sin\theta)u=(cosθ,sinθ) and v=(1,1)v=(1,1)v=(1,1). Express u⋅vu\cdot vu⋅v in terms of θ\thetaθ.
Given u=(2,1,0)u=(2,1,0)u=(2,1,0) and v=(−1,3,4)v=(-1,3,4)v=(−1,3,4), compute the dot product of u+vu+vu+v with u−vu-vu−v.
Let u=(4,−2,1)u=(4,-2,1)u=(4,−2,1) and v=(1,0,−1)v=(1,0,-1)v=(1,0,−1). Find the scalar projection of uuu onto vvv.
Compute the dot product of the row vector from matrix AAA and column vector www, where A=(2−13041−250),w=(12−1),A=\begin{pmatrix}2 & -1 & 3\\0 & 4 & 1\\-2 & 5 & 0\end{pmatrix},\quad w=\begin{pmatrix}1\\2\\-1\end{pmatrix},A=20−2−145310,w=12−1, and we take the first row of AAA.
Let u(t)=(t,t2,1)u(t)=(t,t^2,1)u(t)=(t,t2,1) and v(t)=(1,2t,t)v(t)=(1,2t,t)v(t)=(1,2t,t). Compute u(2)⋅v(2)u(2)\cdot v(2)u(2)⋅v(2).
Previous
No previous topic
Next
Question Type 2: Rewriting vector operations