Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Determine the value of λ\lambdaλ such that the vectors u=(1,λ,3)\mathbf{u}=(1, \lambda, 3)u=(1,λ,3) and v=(2,−1,4)\mathbf{v}=(2, -1, 4)v=(2,−1,4) are perpendicular.
Find the scalar product of the vectors u=(304)\mathbf{u} = \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix}u=304 and v=(401)\mathbf{v} = \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}v=401.
Let u=(4−21)\mathbf{u} = \begin{pmatrix} 4 \\ -2 \\ 1 \end{pmatrix}u=4−21 and v=(10−1)\mathbf{v} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}v=10−1.
Find the scalar projection of u\mathbf{u}u onto v\mathbf{v}v.
Compute the dot product of the four-dimensional vectors u=(1,2,3,4)\mathbf{u}=(1,2,3,4)u=(1,2,3,4) and v=(0,−1,2,−3)\mathbf{v}=(0,-1,2,-3)v=(0,−1,2,−3).
Find the dot product of the five-dimensional vectors u=(1,0,−2,3,1)\mathbf{u}=(1,0,-2,3,1)u=(1,0,−2,3,1) and v=(2,1,0,−1,4)\mathbf{v}=(2,1,0,-1,4)v=(2,1,0,−1,4).
Given two vectors u\mathbf{u}u and v\mathbf{v}v satisfy ∣u∣=5|\mathbf{u}|=5∣u∣=5, ∣v∣=7|\mathbf{v}|=7∣v∣=7 and the angle between them is 60∘60^\circ60∘, find u⋅v\mathbf{u}\cdot \mathbf{v}u⋅v.
Find the scalar product of u=(−253)\mathbf{u}=\begin{pmatrix}-2\\5\\3\end{pmatrix}u=−253 and v=(1−42)\mathbf{v}=\begin{pmatrix}1\\-4\\2\end{pmatrix}v=1−42.
Consider the matrix AAA and the column vector www defined by: A=(2−13041−250),w=(12−1)A=\begin{pmatrix}2 & -1 & 3\\0 & 4 & 1\\-2 & 5 & 0\end{pmatrix}, \quad w=\begin{pmatrix}1\\2\\-1\end{pmatrix}A=20−2−145310,w=12−1
Calculate the dot product of the first row of AAA and the vector www.
Given u=(210)\mathbf{u}=\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}u=210 and v=(−134)\mathbf{v}=\begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix}v=−134, calculate the scalar product (u+v)⋅(u−v)(\mathbf{u}+\mathbf{v}) \cdot (\mathbf{u}-\mathbf{v})(u+v)⋅(u−v).
Let u=(cosθ,sinθ)\mathbf{u}=(\cos\theta,\sin\theta)u=(cosθ,sinθ) and v=(1,1)\mathbf{v}=(1,1)v=(1,1). Express u⋅v\mathbf{u}\cdot\mathbf{v}u⋅v in terms of θ\thetaθ.
Let u(t)=(t,t2,1)\mathbf{u}(t)=(t,t^2,1)u(t)=(t,t2,1) and v(t)=(1,2t,t)\mathbf{v}(t)=(1,2t,t)v(t)=(1,2t,t). Compute u(2)⋅v(2)\mathbf{u}(2)\cdot \mathbf{v}(2)u(2)⋅v(2).
Previous
No previous topic
Next
Question Type 2: Rewriting vector operations