Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Classify the relationship between the lines L1L_1L1 and L2L_2L2 defined by:
L1:r=(000)+t(111)L_1: \boldsymbol{r} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}L1:r=000+t111
L2:r=(123)+s(124)L_2: \boldsymbol{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}L2:r=123+s124
Classify the relationship between the lines L1:(1,1,1)+t (3,6,9)L_1: \bigl(1,1,1\bigr)+t\,(3,6,9)L1:(1,1,1)+t(3,6,9) and L2:(4,7,10)+s (1,2,3)L_2: \bigl(4,7,10\bigr)+s\,(1,2,3)L2:(4,7,10)+s(1,2,3).
Classify the relationship between the lines L1L_1L1 and L2L_2L2 defined by: L1:r=(111)+t(2−13)L_1: \mathbf{r} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}L1:r=111+t2−13 L2:r=(304)+s(−12−2)L_2: \mathbf{r} = \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix} + s \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix}L2:r=304+s−12−2
L1:r=(000)+t(110)L_1: \mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}L1:r=000+t110
L2:r=(011)+s(101)L_2: \mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + s \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}L2:r=011+s101
L1:r=(210)+t(420)L_1: \mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix}L1:r=210+t420
L2:r=(135)+s(210)L_2: \mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} + s \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}L2:r=135+s210
Classify the relationship between the lines L1L_1L1 and L2L_2L2 defined by: L1:r=(123)+t(246)L_1: \mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}L1:r=123+t246 L2:r=(010)+s(123)L_2: \mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}L2:r=010+s123
Classify the relationship between the lines.
Classify the relationship between the lines L1L_1L1 and L2L_2L2 defined by: L1:r=(2−13)+t(42−6)L_1: \mathbf{r} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + t \begin{pmatrix} 4 \\ 2 \\ -6 \end{pmatrix}L1:r=2−13+t42−6 L2:r=(61−3)+s(21−3)L_2: \mathbf{r} = \begin{pmatrix} 6 \\ 1 \\ -3 \end{pmatrix} + s \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}L2:r=61−3+s21−3
L1:r=(101)+t(234)L_1: \mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}L1:r=101+t234
L2:r=(259)+s(468)L_2: \mathbf{r} = \begin{pmatrix} 2 \\ 5 \\ 9 \end{pmatrix} + s \begin{pmatrix} 4 \\ 6 \\ 8 \end{pmatrix}L2:r=259+s468
Classify the relationship between the lines L1:r=(111)+t(123)L_1: \mathbf{r} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}L1:r=111+t123 and L2:r=(503)+s(4−12)L_2: \mathbf{r} = \begin{pmatrix} 5 \\ 0 \\ 3 \end{pmatrix} + s \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix}L2:r=503+s4−12.
Classify the relationship between the lines L1:r=(123)+t(101)L_1: \mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}L1:r=123+t101 and L2:r=(224)+s(01−1)L_2: \mathbf{r} = \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix} + s \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}L2:r=224+s01−1.
Classify the relationship between the lines L1L_1L1 and L2L_2L2 defined by: L1:r=(301)+t(112)L_1: \mathbf{r} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} + t\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}L1:r=301+t112 L2:r=(123)+s(2−11)L_2: \mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}L2:r=123+s2−11
L1:r=(012)+t(3−12)L_1: \mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}L1:r=012+t3−12
L2:r=(6−16)+s(3−12)L_2: \mathbf{r} = \begin{pmatrix} 6 \\ -1 \\ 6 \end{pmatrix} + s \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}L2:r=6−16+s3−12
Previous
Question Type 1: Finding the point of intersection for two lines
Next
Question Type 3: Finding the value of parameters for which the two lines would be under a specific classification