Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Find the coordinates of the point of intersection of the lines L1L_1L1 and L2L_2L2 defined by the equations: L1:r=(−213)+t(4−32)L_1: \mathbf{r} = \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix} + t\begin{pmatrix} 4 \\ -3 \\ 2 \end{pmatrix}L1:r=−213+t4−32 L2:r=(4−78)+u(−25−3)L_2: \mathbf{r} = \begin{pmatrix} 4 \\ -7 \\ 8 \end{pmatrix} + u\begin{pmatrix} -2 \\ 5 \\ -3 \end{pmatrix}L2:r=4−78+u−25−3
Find the point of intersection of the lines L1L_1L1 and L2L_2L2 defined by:
L1:r=(102)+t(21−1)L_1: \mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + t \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}L1:r=102+t21−1
L2:r=(11−1)+u(101)L_2: \mathbf{r} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} + u \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}L2:r=11−1+u101
Determine the coordinates of the intersection of the lines L1L_1L1 and L2L_2L2 defined by:
L1:r=(230)+t(3−21)L_1: \mathbf{r} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} + t \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}L1:r=230+t3−21
L2:r=(12−71)+u(−142)L_2: \mathbf{r} = \begin{pmatrix} 12 \\ -7 \\ 1 \end{pmatrix} + u \begin{pmatrix} -1 \\ 4 \\ 2 \end{pmatrix}L2:r=12−71+u−142
Find the coordinates of the point of intersection of the lines L1L_1L1 and L2L_2L2 defined by the following equations:
L1:r=(013)+t(12−1)L_1: \mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}L1:r=013+t12−1
L2:r=(442)+u(2−11)L_2: \mathbf{r} = \begin{pmatrix} 4 \\ 4 \\ 2 \end{pmatrix} + u \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}L2:r=442+u2−11
Determine the coordinates of the intersection of the lines L1L_1L1 and L2L_2L2: L1:r=(1,1,1)+t(5,2,−1)L_1: \mathbf{r} = (1, 1, 1) + t(5, 2, -1)L1:r=(1,1,1)+t(5,2,−1) L2:r=(2,17,−7)+u(3,−4,2)L_2: \mathbf{r} = (2, 17, -7) + u(3, -4, 2)L2:r=(2,17,−7)+u(3,−4,2)
Determine the coordinates of the point of intersection of the following two lines:
L1:r=(210)+t(3−12)L_1: \mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + t\begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}L1:r=210+t3−12
L2:r=(5−24.5)+u(11−1)L_2: \mathbf{r} = \begin{pmatrix} 5 \\ -2 \\ 4.5 \end{pmatrix} + u\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}L2:r=5−24.5+u11−1
Calculate the intersection point of the lines:
Find the coordinates of the intersection point.
The lines L1L_1L1 and L2L_2L2 are defined by: L1:r=(012)+t(234)L_1: \mathbf{r} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}L1:r=012+t234 L2:r=(1.251.254.5)+u(−15−2)L_2: \mathbf{r} = \begin{pmatrix} 1.25 \\ 1.25 \\ 4.5 \end{pmatrix} + u \begin{pmatrix} -1 \\ 5 \\ -2 \end{pmatrix}L2:r=1.251.254.5+u−15−2
Find the coordinates of the point of intersection of the two lines.
Find the intersection point of the lines: L1:r=(000)+t(123),L2:r=(345)+u(−2−3−4)L_1: \mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + t\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad L_2: \mathbf{r} = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} + u\begin{pmatrix} -2 \\ -3 \\ -4 \end{pmatrix}L1:r=000+t123,L2:r=345+u−2−3−4
Find the coordinates of the point of intersection of the lines L1L_1L1 and L2L_2L2.
L1:r=(001)+t(123)L_1: \mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}L1:r=001+t123
L2:r=(2.53.56)+u(211)L_2: \mathbf{r} = \begin{pmatrix} 2.5 \\ 3.5 \\ 6 \end{pmatrix} + u \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}L2:r=2.53.56+u211
Calculate the intersection point of L1:(−1,0,4)+t(2,1,3),L2:(−1,−1,9)+u(1,1,−1).L_1: (-1,0,4)+t(2,1,3), \quad L_2: (-1,-1,9)+u(1,1,-1).L1:(−1,0,4)+t(2,1,3),L2:(−1,−1,9)+u(1,1,−1).
Previous
No previous topic
Next
Question Type 2: Given 2 vectors, classifying what type of lines they are