Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Compute the cross product of the vectors a=(231)\mathbf{a} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}a=231 and b=(414)\mathbf{b} = \begin{pmatrix} 4 \\ 1 \\ 4 \end{pmatrix}b=414.
Find the cross product of p=(2,−1,3)\mathbf{p} = (2,-1,3)p=(2,−1,3) and q=(4,0,2)\mathbf{q} = (4,0,2)q=(4,0,2).
Find the cross product of u=(100)\mathbf{u} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}u=100 and v=(010)\mathbf{v} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}v=010.
Determine a vector perpendicular to (123)\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}123 and (456)\begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}456.
Evaluate (3,4,0)×(0,0,5)(3,4,0)\times(0,0,5)(3,4,0)×(0,0,5).
Compute the cross product of p=(1,0,2)\mathbf{p}=(1,0,2)p=(1,0,2) and q=(3,1,1)\mathbf{q}=(3,1,1)q=(3,1,1).
Determine whether a=(123)\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}a=123 and b=(246)\mathbf{b} = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}b=246 are parallel by computing a×b\mathbf{a} \times \mathbf{b}a×b.
Given a=(234)\mathbf{a}=\begin{pmatrix}2\\3\\4\end{pmatrix}a=234 and b=(−102)\mathbf{b}=\begin{pmatrix}-1\\0\\2\end{pmatrix}b=−102, find the magnitude ∥a×b∥\|\mathbf{a}\times\mathbf{b}\|∥a×b∥.
Compute the area of the parallelogram spanned by a=(213)\mathbf{a}=\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}a=213 and b=(−121)\mathbf{b}=\begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}b=−121 by finding ∥a×b∥\|\mathbf{a}\times\mathbf{b}\|∥a×b∥.
Find (−1,2,5)×(3,1,−2)(-1, 2, 5) \times (3, 1, -2)(−1,2,5)×(3,1,−2).
If a=(a,0,1)\mathbf{a}=(a,0,1)a=(a,0,1) and b=(0,b,2)\mathbf{b}=(0,b,2)b=(0,b,2), find a×b\mathbf{a}\times\mathbf{b}a×b in terms of aaa and bbb.
If u=(t,2,3)\mathbf{u}=(t,2,3)u=(t,2,3) and v=(1,t,4)\mathbf{v}=(1,t,4)v=(1,t,4), compute u×v\mathbf{u}\times\mathbf{v}u×v in terms of ttt.
Previous
No previous topic
Next
Question Type 2: Finding the cross product using different operations of vectors