Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Find the cross product of u=(1,0,0)\mathbf{u} = (1,0,0)u=(1,0,0) and v=(0,1,0)\mathbf{v} = (0,1,0)v=(0,1,0).
Evaluate (3,4,0)×(0,0,5)(3,4,0)\times(0,0,5)(3,4,0)×(0,0,5).
Compute the cross product of p=(1,0,2)\mathbf{p}=(1,0,2)p=(1,0,2) and q=(3,1,1)\mathbf{q}=(3,1,1)q=(3,1,1).
Compute the cross product of the vectors a=(2,3,1)\mathbf{a} = (2,3,1)a=(2,3,1) and b=(4,1,4)\mathbf{b} = (4,1,4)b=(4,1,4).
Determine whether a=(1,2,3)\mathbf{a}=(1,2,3)a=(1,2,3) and b=(2,4,6)\mathbf{b}=(2,4,6)b=(2,4,6) are parallel by computing a×b\mathbf{a}\times\mathbf{b}a×b.
Compute the cross product of p=(2,−1,3)\mathbf{p} = (2,-1,3)p=(2,−1,3) and q=(4,0,2)\mathbf{q} = (4,0,2)q=(4,0,2).
Find (−1,2,5)×(3,1,−2)( -1,2,5 ) \times (3,1,-2)(−1,2,5)×(3,1,−2).
Compute the area of the parallelogram spanned by a=(2,1,3)\mathbf{a}=(2,1,3)a=(2,1,3) and b=(−1,2,1)\mathbf{b}=(-1,2,1)b=(−1,2,1) by finding ∥a×b∥\|\mathbf{a}\times\mathbf{b}\|∥a×b∥.
Given a=(2,3,4)\mathbf{a}=(2,3,4)a=(2,3,4) and b=(−1,0,2)\mathbf{b}=(-1,0,2)b=(−1,0,2), find the magnitude ∥a×b∥\|\mathbf{a}\times\mathbf{b}\|∥a×b∥.
Determine a vector perpendicular to (1,2,3)(1,2,3)(1,2,3) and (4,5,6)(4,5,6)(4,5,6).
If u=(t,2,3)\mathbf{u}=(t,2,3)u=(t,2,3) and v=(1,t,4)\mathbf{v}=(1,t,4)v=(1,t,4), compute u×v\mathbf{u}\times\mathbf{v}u×v in terms of ttt.
If a=(a,0,1)\mathbf{a}=(a,0,1)a=(a,0,1) and b=(0,b,2)\mathbf{b}=(0,b,2)b=(0,b,2), find a×b\mathbf{a}\times\mathbf{b}a×b in terms of a,ba,ba,b.
Previous
No previous topic
Next
Question Type 2: Finding the cross product using different operations of vectors