Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Let product lifetimes X∼N(1000,σ2)X\sim N(1000,\sigma^2)X∼N(1000,σ2). Given P(X<900)=0.1587P(X<900)=0.1587P(X<900)=0.1587, find σ\sigmaσ.
Let X∼N(27,σ2)X\sim N(27,\sigma^2)X∼N(27,σ2). Given P(X>32)=0.16P(X>32)=0.16P(X>32)=0.16, find the variance of XXX.
Let X∼N(40,σ2)X\sim N(40,\sigma^2)X∼N(40,σ2). Given P(X<45)=0.95P(X<45)=0.95P(X<45)=0.95, find σ\sigmaσ.
Let heights X∼N(170,σ2)X\sim N(170,\sigma^2)X∼N(170,σ2). If only 2.5% of adults exceed 190 cm, find σ\sigmaσ.
Let X∼N(100,σ2)X\sim N(100,\sigma^2)X∼N(100,σ2). Given P(X>120)=0.10P(X>120)=0.10P(X>120)=0.10, find the variance of XXX.
Let measurement errors X∼N(μ,25)X\sim N(\mu,25)X∼N(μ,25). Given P(X>20)=0.025P(X>20)=0.025P(X>20)=0.025, find μ\muμ.
Let X∼N(μ,152)X\sim N(\mu,15^2)X∼N(μ,152). Given P(X>60)=0.05P(X>60)=0.05P(X>60)=0.05, find μ\muμ.
Let X∼N(80,σ2)X\sim N(80,\sigma^2)X∼N(80,σ2). Given P(X>100)=0.025P(X>100)=0.025P(X>100)=0.025, find σ\sigmaσ.
Let test scores X∼N(μ,102)X\sim N(\mu,10^2)X∼N(μ,102). Given P(X<85)=0.84P(X<85)=0.84P(X<85)=0.84, find μ\muμ.
Let X∼N(μ,202)X\sim N(\mu,20^2)X∼N(μ,202). Given P(X<150)=0.10P(X<150)=0.10P(X<150)=0.10, find μ\muμ.
Let X∼N(μ,σ2)X\sim N(\mu,\sigma^2)X∼N(μ,σ2). Given P(X<5)=0.1587P(X<5)=0.1587P(X<5)=0.1587 and P(X>9)=0.1587P(X>9)=0.1587P(X>9)=0.1587, find μ\muμ and σ\sigmaσ.
Let X∼N(50,σ2)X\sim N(50,\sigma^2)X∼N(50,σ2). Given P(40<X<60)=0.95P(40<X<60)=0.95P(40<X<60)=0.95, find σ\sigmaσ.
Previous
Question Type 1: Finding the number of standard deviations a specific value is away
Next
No next topic