Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Let product lifetimes X∼N(1000,σ2)X \sim N(1000, \sigma^2)X∼N(1000,σ2). Given that P(X<900)=0.1587P(X < 900) = 0.1587P(X<900)=0.1587, find the value of σ\sigmaσ.
The test scores XXX are normally distributed such that X∼N(μ,102)X \sim N(\mu, 10^2)X∼N(μ,102). Given that P(X<85)=0.84P(X < 85) = 0.84P(X<85)=0.84, find the value of μ\muμ.
Let the heights of adults be normally distributed with X∼N(170,σ2)X \sim N(170, \sigma^2)X∼N(170,σ2).
If 2.5% of adults exceed 190 cm, find the value of σ\sigmaσ.
Let X∼N(μ,σ2)X\sim N(\mu,\sigma^2)X∼N(μ,σ2). Given P(X<5)=0.1587P(X<5)=0.1587P(X<5)=0.1587 and P(X>9)=0.1587P(X>9)=0.1587P(X>9)=0.1587, find μ\muμ and σ\sigmaσ.
Let X∼N(μ,152)X\sim N(\mu,15^2)X∼N(μ,152). Given P(X>60)=0.05P(X>60)=0.05P(X>60)=0.05, find μ\muμ.
Let X∼N(100,σ2)X\sim N(100,\sigma^2)X∼N(100,σ2). Given P(X>120)=0.10P(X>120)=0.10P(X>120)=0.10, find the variance of XXX.
Let X∼N(80,σ2)X \sim N(80, \sigma^2)X∼N(80,σ2). Given P(X>100)=0.025P(X > 100) = 0.025P(X>100)=0.025, find σ\sigmaσ.
Let X∼N(50,σ2)X \sim N(50, \sigma^2)X∼N(50,σ2). Given P(40<X<60)=0.95P(40 < X < 60) = 0.95P(40<X<60)=0.95, find σ\sigmaσ.
Let X∼N(27,σ2)X \sim N(27, \sigma^2)X∼N(27,σ2). Given P(X>32)=0.16P(X > 32) = 0.16P(X>32)=0.16, find the variance of XXX.
Let X∼N(μ,202)X\sim N(\mu,20^2)X∼N(μ,202). Given P(X<150)=0.10P(X<150)=0.10P(X<150)=0.10, find μ\muμ.
Let measurement errors XXX be normally distributed such that X∼N(μ,25)X \sim \text{N}(\mu, 25)X∼N(μ,25). Given P(X>20)=0.025\text{P}(X > 20) = 0.025P(X>20)=0.025, find the value of μ\muμ.
Let X∼N(40,σ2)X \sim N(40, \sigma^2)X∼N(40,σ2). Given P(X<45)=0.95P(X < 45) = 0.95P(X<45)=0.95, find σ\sigmaσ.
Previous
Question Type 1: Finding the number of standard deviations a specific value is away
Next
No next topic