Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Let X∼N(μ,σ2)X\sim N(\mu,\sigma^2)X∼N(μ,σ2) and P(X<a)=0.40P(X<a)=0.40P(X<a)=0.40. Calculate the number of standard deviations aaa is below or above the mean.
Given X∼N(μ,σ2)X\sim N(\mu,\sigma^2)X∼N(μ,σ2) and P(X>a)=0.34P(X>a)=0.34P(X>a)=0.34, find how many standard deviations above the mean aaa is.
Given X∼N(μ,σ2)X\sim N(\mu,\sigma^2)X∼N(μ,σ2) with P(X>a)=0.20P(X>a)=0.20P(X>a)=0.20, find a−μσ\frac{a-\mu}{\sigma}σa−μ.
Suppose X∼N(μ,σ2)X\sim N(\mu,\sigma^2)X∼N(μ,σ2) and P(X<a)=0.05P(X<a)=0.05P(X<a)=0.05. How many standard deviations below the mean is aaa?
Suppose X∼N(μ,σ2)X\sim N(\mu,\sigma^2)X∼N(μ,σ2) and P(X>a)=0.30P(X>a)=0.30P(X>a)=0.30. How many standard deviations above the mean is aaa?
Suppose X∼N(μ,σ2)X\sim N(\mu,\sigma^2)X∼N(μ,σ2) and P(X>a)=0.1587P(X>a)=0.1587P(X>a)=0.1587. Find a−μσ\frac{a-\mu}{\sigma}σa−μ.
For X∼N(μ,σ2)X\sim N(\mu,\sigma^2)X∼N(μ,σ2), if P(X>a)=0.10P(X>a)=0.10P(X>a)=0.10, determine the number of standard deviations that aaa lies above the mean.
Given a normal variable XXX with mean μ\muμ and standard deviation σ\sigmaσ, if P(X<a)=0.8413P(X<a)=0.8413P(X<a)=0.8413, determine the number of standard deviations aaa is above the mean.
For X∼N(μ,σ2)X\sim N(\mu,\sigma^2)X∼N(μ,σ2), if P(X>a)=0.975P(X>a)=0.975P(X>a)=0.975, how many standard deviations below the mean is aaa?
Given a normal random variable XXX with mean μ\muμ and variance σ2\sigma^2σ2, if P(X>a)=0.025P(X>a)=0.025P(X>a)=0.025, find a−μσ\frac{a-\mu}{\sigma}σa−μ.
Let X∼N(μ,σ2)X\sim N(\mu,\sigma^2)X∼N(μ,σ2) and P(X>a)=0.005P(X>a)=0.005P(X>a)=0.005. Calculate how many standard deviations above the mean aaa lies.
For a normal distribution X∼N(μ,σ2)X\sim N(\mu,\sigma^2)X∼N(μ,σ2), if P(X<a)=0.995P(X<a)=0.995P(X<a)=0.995, find the number of standard deviations of aaa above the mean.
Previous
No previous topic
Next
Question Type 2: Finding mean and standard deviation given probability and x value