Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Differentiate y=(x2+5)3y = (x^2+5)^3y=(x2+5)3 with respect to xxx.
Find ddx(3x+2)4\frac{d}{dx}(3x+2)^4dxd(3x+2)4.
Differentiate y=(x3−4x)5y = (x^3 - 4x)^5y=(x3−4x)5 with respect to xxx.
Differentiate y=(x2+3x)3y = (x^2 + 3x)^3y=(x2+3x)3 with respect to xxx.
Find the derivative of y=(x2+1)4y = (x^2+1)^4y=(x2+1)4.
Find y′y'y′ if y=(2x2+3x+1)2y = (2x^2 + 3x + 1)^2y=(2x2+3x+1)2.
Compute ddx((3x+1)12)\frac{d}{dx}\bigl( \frac{}{}(3x+1)^{\frac12}\bigr)dxd((3x+1)21).
Differentiate y=(4x3−x)3y = (4x^3 - x)^3y=(4x3−x)3 with respect to xxx.
Find dydx\frac{dy}{dx}dxdy if y=(x5+x)2y = (x^5 + x)^2y=(x5+x)2.
Find dydx\frac{dy}{dx}dxdy for y=(x2−2x+3)3y = (x^2 - 2x + 3)^3y=(x2−2x+3)3.
Differentiate y=(5x−7)−2y = (5x - 7)^{-2}y=(5x−7)−2 with respect to xxx.
Differentiate y=(2x+1)52y = (2x+1)^{\frac{5}{2}}y=(2x+1)25 with respect to xxx.
Previous
Question Type 1: Finding the derivatives of more complex functions that involve trigonometric, exponential functions
Next
Question Type 3: Learning to apply chain rule on more complex composite function with possible multiple chains