Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Find the derivative of f(x)=ln(3x2+5)f(x) = \ln(3x^2 + 5)f(x)=ln(3x2+5).
Differentiate h(x)=sin((2x+1)4)h(x) = \sin\bigl((2x+1)^4\bigr)h(x)=sin((2x+1)4).
Differentiate y=sin(e3x)y = \sin\bigl(e^{3x}\bigr)y=sin(e3x).
Find y′=ddx[ln(5x+3)]y'=\frac{d}{dx}\Bigl[\ln\bigl(\sqrt{5x+3}\bigr)\Bigr]y′=dxd[ln(5x+3)].
Compute the derivative of g(x)=esin(x2)g(x) = e^{\sin(x^2)}g(x)=esin(x2).
Differentiate h(x)=(tan(2x))5h(x) = \bigl(\tan(2x)\bigr)^5h(x)=(tan(2x))5.
Find the derivative of f(x)=ee2xf(x) = e^{e^{2x}}f(x)=ee2x.
Find f′(x)f'(x)f′(x) for f(x)=ln(x2+1)+sin(e3x)f(x) = \ln(x^2 + 1) + \sin(e^{3x})f(x)=ln(x2+1)+sin(e3x).
Compute the derivative of y=cos(eln(x)+x2)y = \cos\bigl(e^{\ln(x)+x^2}\bigr)y=cos(eln(x)+x2).
Differentiate y=ln((3x+1)2+e4x).y = \ln\bigl((3x+1)^2 + e^{4x}\bigr).y=ln((3x+1)2+e4x).
Compute the derivative of y=arctan(e3x2)y = \arctan\bigl(e^{3x^2}\bigr)y=arctan(e3x2).
Differentiate f(x)=(sin(3x+cosx))2.f(x) = \bigl(\sin(3x+\cos x)\bigr)^2.f(x)=(sin(3x+cosx))2.
Previous
Question Type 2: Learning to apply chain rule on simple composites
Next
Question Type 4: Learning to apply product rule on functions of x that are in multiple