Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Differentiate w(x)=1x2+4lnx+6sinxw(x)=\tfrac{1}{x^2}+4\ln x+6\sin xw(x)=x21+4lnx+6sinx.
Differentiate u(x)=x5+2x−1+3ex−4cosx+lnxu(x)=x^{5}+2x^{-1}+3e^x-4\cos x+\ln xu(x)=x5+2x−1+3ex−4cosx+lnx.
Differentiate f(x)=49x−3+3lnx−sinxf(x) = \frac{4}{9}x^{-3} + 3\ln x - \sin xf(x)=94x−3+3lnx−sinx with respect to xxx.
Find g′(x)g'(x)g′(x) for g(x)=5ex−7cosx+x12g(x) = 5e^x - 7\cos x + x^{\frac12}g(x)=5ex−7cosx+x21.
Differentiate s(x)=4ex+5sinx+3x74s(x)=4e^x+5\sin x+3x^{\frac74}s(x)=4ex+5sinx+3x47.
Differentiate v(x)=x13−3tanx+7lnx−exv(x)=x^{\frac13}-3\tan x+7\ln x-e^xv(x)=x31−3tanx+7lnx−ex.
Differentiate h(x)=2x−1+4x32+lnxh(x)=2x^{-1}+4x^{\frac32}+\ln xh(x)=2x−1+4x23+lnx.
Differentiate t(x)=−8lnx+2cotx−5x−2t(x)=-8\ln x+2\cot x-5x^{-2}t(x)=−8lnx+2cotx−5x−2.
Differentiate p(x)=3tanx−x−5+6lnxp(x)=3\tan x - x^{-5} + 6\ln xp(x)=3tanx−x−5+6lnx.
Given f(x)=2lnx+3ex−4sinx+x−12f(x)=2\ln x+3e^x-4\sin x+x^{-\frac12}f(x)=2lnx+3ex−4sinx+x−21, compute f′(1)f'(1)f′(1).
Differentiate r(x)=7lnx−9secx+x−13r(x)=7\ln x-9\sec x+x^{-\frac13}r(x)=7lnx−9secx+x−31.
Differentiate q(x)=x23+4cscx+2exq(x)=x^{\frac23}+4\csc x+2e^xq(x)=x32+4cscx+2ex.
Previous
No previous topic
Next
Question Type 2: Learning to apply chain rule on simple composites