Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
By substituting y=vxy = vxy=vx, solve the differential equation
dydx=5xβ2y2x+5y.\frac{dy}{dx} = \frac{5x - 2y}{2x + 5y}.dxdyβ=2x+5y5xβ2yβ.
Solve the differential equation
dydx=xβyx+y.\frac{dy}{dx} = \frac{x - y}{x + y}.dxdyβ=x+yxβyβ.
By using the substitution y=vxy=vxy=vx, solve the differential equation
dydx=(yx)1/2.\frac{dy}{dx} = \biggl(\frac{y}{x}\biggr)^{1/2}.dxdyβ=(xyβ)1/2.
dydx=3yβxy+x\frac{dy}{dx} = \frac{3y - x}{y + x}dxdyβ=y+x3yβxβ
dydx=2xβyx+2y\frac{dy}{dx} = \frac{2x - y}{x + 2y}dxdyβ=x+2y2xβyβ
dydx=yx+1.\frac{dy}{dx} = \frac{y}{x} + 1.dxdyβ=xyβ+1.
Solve the initial-value problem: dydx=yx+2,y(1)=3\frac{dy}{dx} = \frac{y}{x} + 2, \quad y(1)=3dxdyβ=xyβ+2,y(1)=3
Find the general solution of the differential equation
dydx=x+yxβy.\frac{dy}{dx} = \frac{x + y}{x - y}.dxdyβ=xβyx+yβ.
[6 marks]
dydx=yβ2xy+2x.\frac{dy}{dx} = \frac{y - 2x}{y + 2x}.dxdyβ=y+2xyβ2xβ.
dydx=y2+x2xy.\frac{dy}{dx} = \frac{y^2 + x^2}{xy}.dxdyβ=xyy2+x2β.
Solve the initial-value problem
dydx=2yβxyβ2x,y(1)=1\frac{dy}{dx} = \frac{2y - x}{y - 2x}, \quad y(1)=1dxdyβ=yβ2x2yβxβ,y(1)=1
Previous
Question Type 2: Solving separable differential equations
Next
Question Type 4: Solving with the integrating factor (linear ODEs)