Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Solve the linear ODE yβ²+(tanβ‘x)y=sinβ‘xy' + (\tan x)y = \sin xyβ²+(tanx)y=sinx for the general solution y(x)y(x)y(x).
Solve yβ²+(tanβ‘x)y=secβ‘xtanβ‘xy' + (\tan x)y = \sec x \tan xyβ²+(tanx)y=secxtanx given y(0)=0y(0)=0y(0)=0.
Solve the differential equation yβ²+1xy=sinβ‘xxy' + \dfrac{1}{x} y = \dfrac{\sin x}{x}yβ²+x1βy=xsinxβ for x>0x > 0x>0, given that y(Ο)=0y(\pi)=0y(Ο)=0.
Solve the differential equation yβ²=dydx=cosβ‘x+ytanβ‘xy' = \frac{dy}{dx} = \cos x + y \tan xyβ²=dxdyβ=cosx+ytanx for y(x)y(x)y(x).
Solve yβ²+3xy=4x2y' + \dfrac{3}{x} y = 4x^2yβ²+x3βy=4x2 for the general solution y(x)y(x)y(x) (assume x>0x>0x>0).
Solve the ODE yβ²+(1βtanβ‘x)βy=secβ‘xy' + (1 - \tan x)\,y = \sec xyβ²+(1βtanx)y=secx for the general solution y(x)y(x)y(x).
Solve xβyβ²+y=x2x\,y' + y = x^2xyβ²+y=x2 with y(1)=1y(1)=1y(1)=1. [6 marks]
Solve yβ²+2y=eβxy' + 2y = e^{-x}yβ²+2y=eβx with the initial condition y(0)=0y(0)=0y(0)=0.
Solve yβ²βy=e2xy' - y = e^{2x}yβ²βy=e2x with y(0)=0y(0)=0y(0)=0.
Solve yβ²+2xy=3xy' + \dfrac{2}{x} y = 3xyβ²+x2βy=3x with y(1)=2y(1)=2y(1)=2.
Solve yβ²+2xy=xy' + 2xy = xyβ²+2xy=x for the general solution y(x)y(x)y(x).
Solve yβ²+11+xy=21+xy' + \dfrac{1}{1+x}y = \dfrac{2}{1+x}yβ²+1+x1βy=1+x2β subject to y(0)=0y(0)=0y(0)=0.
Solve the differential equation yβ²=cosβ‘(x)+ytanβ‘(x),y' = \cos(x) + y\tan(x),yβ²=cos(x)+ytan(x), given the boundary condition y(0)=1y(0)=1y(0)=1.
Solve yβ²β2xy=x2y' - \dfrac{2}{x} y = x^2yβ²βx2βy=x2 subject to y(1)=0y(1)=0y(1)=0.
Previous
Question Type 3: Homogeneous differential equations (substitution π£ = π¦ / π₯ )
Next
No next topic