Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Solve y′−y=e2xy' - y = e^{2x}y′−y=e2x with y(0)=0y(0)=0y(0)=0.
Solve y′+2x y=xy' + 2x\,y = xy′+2xy=x for the general solution y(x)y(x)y(x).
Solve y′+2y=e−xy' + 2y = e^{-x}y′+2y=e−x with the initial condition y(0)=0y(0)=0y(0)=0.
Solve y′+3xy=4x2y' + \dfrac{3}{x} y = 4x^2y′+x3y=4x2 for the general solution y(x)y(x)y(x) (assume x>0x>0x>0).
Solve x y′+y=x2x\,y' + y = x^2xy′+y=x2 with y(1)=1y(1)=1y(1)=1.
Solve y′−2xy=x2y' - \dfrac{2}{x} y = x^2y′−x2y=x2 subject to y(1)=0y(1)=0y(1)=0.
Solve y′+1xy=sin xxy' + \dfrac{1}{x} y = \dfrac{\text{sin}\,x}{x}y′+x1y=xsinx with y(π)=0y(\pi)=0y(π)=0.
Solve the differential equation y′=dydx=cos x+y tanxy' = \frac{d y}{d x} = \text{cos} \thinspace x + y\,tan xy′=dxdy=cosx+ytanx for y(x)y(x)y(x).
Solve y′+11+x y=21+xy' + \dfrac{1}{1+x}\,y = \dfrac{2}{1+x}y′+1+x1y=1+x2 subject to y(0)=0y(0)=0y(0)=0.
Solve the linear ODE y′+(tanx) y=sin xy' + (\tan x)\,y = \text{sin}\,xy′+(tanx)y=sinx for the general solution y(x)y(x)y(x).
Solve y′+(tanx) y=secx tanxy' + (\tan x)\,y = \sec x\,\tan xy′+(tanx)y=secxtanx given y(0)=0y(0)=0y(0)=0.
Solve y′+2xy=3xy' + \dfrac{2}{x} y = 3xy′+x2y=3x with y(1)=2y(1)=2y(1)=2.
Solve the ODE y′+(1−tanx) y=secxy' + (1 - \tan x)\,y = \sec xy′+(1−tanx)y=secx for the general solution y(x)y(x)y(x).
Solve the differential equation y′=cos(x)+ytan(x),y' = \cos(x) + y\tan(x),y′=cos(x)+ytan(x), given the boundary condition y(0)=1y(0)=1y(0)=1.
Previous
Question Type 3: Homogeneous differential equations (substitution 𝑣 = 𝑦 / 𝑥 )
Next
No next topic