Question Type 1: Finding the optimal area or volume of specific 2D or 3D shapes
Question Type 1: Finding the optimal area or volume of specific 2D or 3D shapes Exercises
Question 1
Skill question
A rectangle has a perimeter of 60 cm. Find its dimensions that maximize the area and determine this maximum area.
Question 2
Skill question
The profit from selling x items is given by P(x)=50x−0.5x2. Find x that maximizes profit and the maximum profit.
Question 3
Skill question
A company earns $18 per product sold and has a cost function C(q)=5q2−22q. Find the production quantity q that maximizes profit.
Question 4
Skill question
A rectangular garden has its width equal to three times its length. If the perimeter is 80 m, find the garden's dimensions that maximize its area.
Question 5
Skill question
A farmer wants to fence a rectangular field along a river. No fence is needed along the river, and he has 200 m of fencing for the other three sides. Find the dimensions that maximize the area enclosed.
Question 6
Skill question
A firm has cost function C(q)=0.5q2+10q+200 and revenue R(q)=25q. Find the quantity q that maximizes profit.
Question 7
Skill question
A closed cuboid has width w=3l and the sum of all its edges is 120 cm. Find l, w, and h that maximize its volume.
Question 8
Skill question
A closed cuboid has width w=3l and total surface area 600 cm2. Find l, w, and height h that maximize its volume.
Question 9
Skill question
For a cylindrical can with top and bottom, the total surface area is 50πcm2. Determine the radius r and height h that maximize its volume.