Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Find the derivative of the function f(x)=5x3+8x2+9x+3f(x)=5x^3+8x^2+9x+3f(x)=5x3+8x2+9x+3.
Compute the derivative of f(x)=2x3−9x2+4x−7f(x)=2x^3-9x^2+4x-7f(x)=2x3−9x2+4x−7.
Differentiate f(x)=−4x4+7x3−x+5f(x)=-4x^4+7x^3-x+5f(x)=−4x4+7x3−x+5.
Let f(x)=2x3−3x2+4x+1f(x)=2x^3-3x^2+4x+1f(x)=2x3−3x2+4x+1. Find f′(x)f'(x)f′(x).
Find f′(x)f'(x)f′(x) if f(x)=6x5−3x2+12f(x)=6x^5-3x^2+12f(x)=6x5−3x2+12.
For f(x)=4x3−5x2+6x−2f(x)=4x^3-5x^2+6x-2f(x)=4x3−5x2+6x−2, find f′(x)f'(x)f′(x) and f′′(x)f''(x)f′′(x).
Given f(x)=7x4−x3+2x2−5x+11f(x)=7x^4-x^3+2x^2-5x+11f(x)=7x4−x3+2x2−5x+11, find f′(2)f'(2)f′(2).
Find the equation of the tangent to y=3x3−x+2y=3x^3-x+2y=3x3−x+2 at x=1x=1x=1.
Compute the second derivative of f(x)=x5−5x3+4xf(x)=x^5-5x^3+4xf(x)=x5−5x3+4x.
Find all xxx such that the gradient of y=−2x5+3x4−x2+x−4y=-2x^5+3x^4-x^2+x-4y=−2x5+3x4−x2+x−4 is zero.
Determine the stationary points of f(x)=x4−4x3+6x2f(x)=x^4-4x^3+6x^2f(x)=x4−4x3+6x2.
Find the inflection point(s) of y=x3−6x2+9xy=x^3-6x^2+9xy=x3−6x2+9x.
Previous
No previous topic
Next
Question Type 2: Finding where a polynomial is increasing or decreasing up to cubics