Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Find the derivative f′(x)f'(x)f′(x) of the function f(x)=x3−5x2+6x+9f(x) = x^3 - 5x^2 + 6x + 9f(x)=x3−5x2+6x+9
Identify the critical points of f(x)=x3−5x2+6x+9f(x) = x^3 - 5x^2 + 6x + 9f(x)=x3−5x2+6x+9.
Solve the equation f′(x)=0f'(x)=0f′(x)=0 for f(x)=x3−5x2+6x+9f(x) = x^3 - 5x^2 + 6x + 9f(x)=x3−5x2+6x+9.
Determine the intervals on which f(x)=x3−5x2+6x+9f(x) = x^3 - 5x^2 + 6x + 9f(x)=x3−5x2+6x+9 is decreasing.
Construct a sign chart for f′(x)f'(x)f′(x) of f(x)=x3−5x2+6x+9f(x)=x^3-5x^2+6x+9f(x)=x3−5x2+6x+9, indicating the sign of f′(x)f'(x)f′(x) on each interval determined by the critical points.
Determine the intervals on which f(x)=x3−5x2+6x+9f(x) = x^3 - 5x^2 + 6x + 9f(x)=x3−5x2+6x+9 is increasing.
Determine whether f(x)=x3−5x2+6x+9f(x)=x^3-5x^2+6x+9f(x)=x3−5x2+6x+9 is strictly increasing, strictly decreasing, or neither on the interval [0,2][0,2][0,2].
Show that f(x)=x3−5x2+6x+9f(x)=x^3-5x^2+6x+9f(x)=x3−5x2+6x+9 is not monotonic on its entire domain R\mathbb{R}R.
Classify each critical point of f(x)=x3−5x2+6x+9f(x) = x^3 - 5x^2 + 6x + 9f(x)=x3−5x2+6x+9 as a local maximum or minimum using the first derivative test.
Find the inflection point of f(x)=x3−5x2+6x+9f(x)=x^3-5x^2+6x+9f(x)=x3−5x2+6x+9 by using the second derivative.
Verify by selecting appropriate test points that f(x)=x3−5x2+6x+9f(x)=x^3-5x^2+6x+9f(x)=x3−5x2+6x+9 is increasing on (−∞,5−73)(-\infty,\tfrac{5-\sqrt7}{3})(−∞,35−7) and decreasing on (5−73,5+73)(\tfrac{5-\sqrt7}{3},\tfrac{5+\sqrt7}{3})(35−7,35+7).
Using the second derivative test, classify the critical points of f(x)=x3−5x2+6x+9f(x)=x^3-5x^2+6x+9f(x)=x3−5x2+6x+9.
Previous
No previous topic
Next
No next topic