Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Given a discrete random variable X with P(X=0)=0.2P(X=0)=0.2P(X=0)=0.2, P(X=1)=pP(X=1)=pP(X=1)=p, and P(X=2)=0.5P(X=2)=0.5P(X=2)=0.5, find the value of ppp.
Let XXX be a random variable with P(X=0)=0.3P(X=0)=0.3P(X=0)=0.3, P(X=1)=0.4P(X=1)=0.4P(X=1)=0.4, P(X=2)=pP(X=2)=pP(X=2)=p, and P(X=3)=0.1P(X=3)=0.1P(X=3)=0.1. Find ppp.
For a discrete random variable X, P(X=1)=pP(X=1)=pP(X=1)=p, P(X=2)=2pP(X=2)=2pP(X=2)=2p, P(X=3)=3pP(X=3)=3pP(X=3)=3p, and P(X=4)=4pP(X=4)=4pP(X=4)=4p. Determine ppp.
A random variable XXX takes values 1, 2, 3 with probabilities ppp, 2p2p2p, and 1−3p1-3p1−3p, respectively. If E(X)=2E(X)=2E(X)=2, find ppp.
For a discrete variable XXX, P(X=0)=pP(X=0)=pP(X=0)=p, P(X=1)=2pP(X=1)=2pP(X=1)=2p, P(X=2)=3pP(X=2)=3pP(X=2)=3p, and P(X=3)=4pP(X=3)=4pP(X=3)=4p. (a) Find ppp. (b) Compute E(X)E(X)E(X).
Consider a geometric distribution on k=0,1,2,…k=0,1,2,\dotsk=0,1,2,… with P(X=k)=a pkP(X=k)=a\,p^kP(X=k)=apk. (a) Find aaa in terms of ppp. (b) Compute E(X)E(X)E(X).
Let XXX satisfy P(X=k)=x kP(X=k)=x\,kP(X=k)=xk for k=1,2,3,4,5k=1,2,3,4,5k=1,2,3,4,5. Given P(X=1)=xP(X=1)=xP(X=1)=x, find xxx and then calculate P(X>3)P(X>3)P(X>3).
A random variable YYY has P(Y=k)=C kP(Y=k)=C\,kP(Y=k)=Ck for k=1,2,3k=1,2,3k=1,2,3. (a) Determine CCC. (b) Find extVar(Y) ext{Var}(Y)extVar(Y).
A random variable has P(X=−1)=0.1P(X=-1)=0.1P(X=−1)=0.1, P(X=0)=pP(X=0)=pP(X=0)=p, P(X=1)=2pP(X=1)=2pP(X=1)=2p, P(X=2)=0.3P(X=2)=0.3P(X=2)=0.3, and P(X=3)=qP(X=3)=qP(X=3)=q. Find ppp and qqq.
A Poisson random variable XXX has parameter λ\lambdaλ. Prove that ∑k=0∞P(X=k)=1\sum_{k=0}^\infty P(X=k)=1∑k=0∞P(X=k)=1 using the series expansion of eλe^\lambdaeλ.
Show that for a geometric distribution P(X=k)=(1−p)pkP(X=k)=(1-p)p^kP(X=k)=(1−p)pk (k=0,1,…k=0,1,\dotsk=0,1,…) the probabilities sum to 1 and derive E(X)=p/(1−p)E(X)=p/(1-p)E(X)=p/(1−p).
In a binomial model X∼B(5,p)X\sim B(5,p)X∼B(5,p) it is known that P(X=2)=0.3P(X=2)=0.3P(X=2)=0.3. Find ppp.
Previous
Question Type 1: Finding the probability of certain outcomes of random variables
Next
Question Type 3: Finding certain values of parameters such that the probability table holds true