Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Expand y=5(x−2)2+3y = 5(x - 2)^2 + 3y=5(x−2)2+3 into standard form ax2+bx+cax^2 + bx + cax2+bx+c.
Convert y=x2+6x+5y = x^2 + 6x + 5y=x2+6x+5 into vertex form.
Convert y=x2−4x+7y = x^2 - 4x + 7y=x2−4x+7 into vertex form.
Expand y=−3(x+4)2+2y = -3(x + 4)^2 + 2y=−3(x+4)2+2 into standard form.
Convert y=−x2+8x−5y = -x^2 + 8x - 5y=−x2+8x−5 into vertex form.
Write the vertex form of the parabola with vertex (3,−2)(3,-2)(3,−2) and leading coefficient a=4a=4a=4.
Expand y=2(x−12)2−5y = 2\bigl(x - \tfrac{1}{2}\bigr)^2 - 5y=2(x−21)2−5 into standard form.
Convert y=2x2−10x+12y = 2x^2 - 10x + 12y=2x2−10x+12 into vertex form.
Convert y=4x2−16x+3y = 4x^2 - 16x + 3y=4x2−16x+3 into vertex form.
Convert y=3x2+12x+7y = 3x^2 + 12x + 7y=3x2+12x+7 into vertex form.
Convert y=12x2−3x+1y = \tfrac12x^2 - 3x + 1y=21x2−3x+1 into vertex form.
Convert y=−2x2+12x−18y = -2x^2 + 12x - 18y=−2x2+12x−18 into vertex form.
Previous
Question Type 8: Converting the quadratic to a product of linear terms
Next
Question Type 10: Using data points or images to estimate quadratic equations