Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Given f(2)=5f(2)=5f(2)=5, f(3)=6f(3)=6f(3)=6, f(6)=8f(6)=8f(6)=8, and f(16)=18f(\tfrac{1}{6})=18f(61)=18, find f−1(6)f^{-1}(6)f−1(6).
Given f(2)=5f(2)=5f(2)=5, f(3)=6f(3)=6f(3)=6, f(6)=8f(6)=8f(6)=8, and f(16)=18f(\tfrac{1}{6})=18f(61)=18, find f−1(8)f^{-1}(8)f−1(8).
For an invertible function hhh, one has h(−1)=4h(-1)=4h(−1)=4, h(2)=−3h(2)=-3h(2)=−3, and h(−3)=2h(-3)=2h(−3)=2. Determine h−1(−3)h^{-1}(-3)h−1(−3).
Given f(4)=10f(4)=10f(4)=10, f(7)=20f(7)=20f(7)=20, and f(10)=30f(10)=30f(10)=30, find f−1(30)f^{-1}(30)f−1(30).
An invertible function ggg satisfies g(1)=2g(1)=2g(1)=2, g(2)=5g(2)=5g(2)=5, and g(5)=12g(5)=12g(5)=12. Find g−1(12)g^{-1}(12)g−1(12).
Let fff be an invertible function with f−1(7)=3f^{-1}(7)=3f−1(7)=3 and f(5)=7f(5)=7f(5)=7. Compute f−1(f(5))f^{-1}(f(5))f−1(f(5)).
If f−1(4)=9f^{-1}(4)=9f−1(4)=9 and f−1(7)=2f^{-1}(7)=2f−1(7)=2, determine f(2)f(2)f(2) and f(9)f(9)f(9).
An invertible function fff has f(1)=3f(1)=3f(1)=3, f(3)=8f(3)=8f(3)=8, and f(8)=15f(8)=15f(8)=15. Evaluate f−1(15)f^{-1}(15)f−1(15) and then f−1(f−1(15))f^{-1}\bigl(f^{-1}(15)\bigr)f−1(f−1(15)).
Define f(x)=1xf(x)=\frac{1}{x}f(x)=x1 for x≠0x\neq0x=0. Find the inverse function f−1(x)f^{-1}(x)f−1(x) and then evaluate f−1(2)f^{-1}(2)f−1(2).
The total cost in dollars of producing xxx units is C(x)=50+2x.C(x)=50+2x.C(x)=50+2x. Interpret C−1(y)C^{-1}(y)C−1(y) and find C−1(150)C^{-1}(150)C−1(150).
The temperature in Fahrenheit is given by F=f(C)=95C+32.F = f(C)=\frac{9}{5}C+32.F=f(C)=59C+32. Find the inverse function f−1(F)f^{-1}(F)f−1(F) and compute f−1(212)f^{-1}(212)f−1(212).
An account balance grows as A(t)=100(1.05)t,A(t)=100(1.05)^t,A(t)=100(1.05)t, where ttt is the number of years. Find the inverse A−1(A)A^{-1}(A)A−1(A) and determine ttt when A=200A=200A=200.
Previous
Question type 7: Determining whether the function has an inverse in the respective domains
Next
No next topic