Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
A box and whisker plot has min=2\min=2min=2, Q1=8Q_1=8Q1=8, median\text{median}median missing, Q3=18Q_3=18Q3=18, max=26\max=26max=26. The median is exactly halfway between Q1Q_1Q1 and Q3Q_3Q3. Find the median.
In a box and whisker plot the five‐number summary is min=4\min=4min=4, Q1=10Q_1=10Q1=10, median=13\text{median}=13median=13, Q3Q_3Q3 missing, max=25\max=25max=25, and the interquartile range (IQR) is 12. Find the missing Q3Q_3Q3.
For a data set the five‐number summary is min=3\min=3min=3, Q1Q_1Q1 missing, median\text{median}median missing, Q3=21Q_3=21Q3=21, max=33\max=33max=33. Given Q1+Q3=30Q_1+Q_3=30Q1+Q3=30 and the median is the average of Q1Q_1Q1 and Q3Q_3Q3, find Q1Q_1Q1 and the median.
In a data set the five‐number summary is min=0\min=0min=0, Q1Q_1Q1 missing, median=12\text{median}=12median=12, Q3Q_3Q3 missing, max=48\max=48max=48. The quartiles split the total range into equal thirds. Find Q1Q_1Q1 and Q3Q_3Q3.
In a box and whisker plot, Q1=7Q_1=7Q1=7 and the distance from Q1Q_1Q1 to the median is 5. The distance from the median to Q3Q_3Q3 is twice the distance from Q1Q_1Q1 to the median. Find the median and Q3Q_3Q3.
A box plot gives min=10\min=10min=10, Q1=18Q_1=18Q1=18, median=26\text{median}=26median=26, Q3Q_3Q3 missing, max\maxmax missing. The interquartile range is 16 and the total range is 30. Find Q3Q_3Q3 and max\maxmax.
For a box plot the five‐number summary is min=4\min=4min=4, Q1=8Q_1=8Q1=8, median\text{median}median missing, Q3Q_3Q3 missing, max=28\max=28max=28. The box (from Q1Q_1Q1 to Q3Q_3Q3) spans one quarter of the total range and is centered around the median. Find the median and Q3Q_3Q3.
In a data set the five‐number summary is min=6\min=6min=6, Q1Q_1Q1 missing, median=14\text{median}=14median=14, Q3=20Q_3=20Q3=20, max=30\max=30max=30. The distance from the median to Q3Q_3Q3 is 4 units greater than the distance from Q1Q_1Q1 to the median. Find Q1Q_1Q1.
In a box and whisker plot the five‐number summary is min=−2\min=-2min=−2, Q1=5Q_1=5Q1=5, median=12\text{median}=12median=12, Q3=20Q_3=20Q3=20, max\maxmax missing. The interquartile range equals half the total range. Find the missing max\maxmax.
In a box plot min=4\min=4min=4, max\maxmax missing, Q1Q_1Q1 missing, median=10\text{median}=10median=10, Q3Q_3Q3 missing. The distance from the median to Q3Q_3Q3 is twice the distance from Q1Q_1Q1 to the median, the interquartile range is 6, and the total range is 12. Find Q1Q_1Q1, Q3Q_3Q3, and max\maxmax.
A data set has min=2\min=2min=2, max=22\max=22max=22, Q1Q_1Q1 missing, median=10\text{median}=10median=10, Q3Q_3Q3 missing. The quartiles divide the total range into thirds (i.e.\ Q1Q_1Q1 is one‐third and Q3Q_3Q3 is two‐thirds of the way from the min to the max). Find Q1Q_1Q1 and Q3Q_3Q3.
A box and whisker plot has min=2\min=2min=2, max=18\max=18max=18, median=10\text{median}=10median=10. The whiskers (from min\minmin to the median and from the median to max\maxmax) are equal in length, and the interquartile range is 8. Find Q1Q_1Q1 and Q3Q_3Q3.
Previous
Question Type 5: Constructing box and whisker plots using cumulative frequency graphs or tables
Next
Question Type 7: Comparing two different data sets of box and whiskers