Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
In triangle ABC, a=5a=5a=5, b=6b=6b=6 and sinA=0.8\sin A = 0.8sinA=0.8. Determine both possible values of angles BBB, CCC and the side ccc.
In triangle ABC, a=6a=6a=6, b=8b=8b=8 and A=25∘A=25^\circA=25∘. Determine both possible triangles (angles BBB, CCC, side ccc).
In triangle ABC, a=7a=7a=7, b=9b=9b=9 and A=40∘A=40^\circA=40∘. Find both possible values of BBB, CCC and ccc.
In triangle ABC, a=11a=11a=11, b=13b=13b=13 and A=35∘A=35^\circA=35∘. Determine both possible triangles (angles BBB, CCC, side ccc).
In triangle ABC, a=6a=6a=6, b=6.2b=6.2b=6.2 and A=70∘A=70^\circA=70∘. Determine both possible triangles (angles BBB, CCC, side ccc).
In triangle ABC, a=8a=8a=8, b=9b=9b=9 and A=30∘A=30^\circA=30∘. Find both possible sets of angles BBB, CCC and side ccc.
In triangle ABC, a=12a=12a=12, b=14b=14b=14 and A=50∘A=50^\circA=50∘. Determine both possible triangles (angles BBB, CCC, side ccc).
In triangle ABC, a=10a=10a=10, b=11b=11b=11 and A=50∘A=50^\circA=50∘. Find both possible values of BBB, CCC and ccc.
In triangle ABC, a=9a=9a=9, b=10b=10b=10 and A=60∘A=60^\circA=60∘. Find both possible values of BBB, CCC and ccc.
In triangle ABC, a=9a=9a=9, b=14b=14b=14 and A=20∘A=20^\circA=20∘. Find both possible values of BBB, CCC and ccc.
In triangle ABC, a=15a=15a=15, b=17b=17b=17 and A=45∘A=45^\circA=45∘. Determine both possible triangles (angles BBB, CCC, side ccc).
In triangle ABC, a=14a=14a=14, b=20b=20b=20 and A=25∘A=25^\circA=25∘. Find both possible values of BBB, CCC and ccc.
Previous
Question Type 4: Determining if given information on a triangle suffers from Ambigious case of sine rule
Next
Question Type 6: Applying the golden rule to rewrite values of trigonometric functions