Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
In a boxplot, Q1=10Q1 = 10Q1=10, median = 121212, and Q3=14Q3 = 14Q3=14. What percentage of the data lies between Q1Q1Q1 and Q3Q3Q3?
A boxplot shows the first quartile at 151515, the median at 303030, and the third quartile at 454545. What is the median value of the dataset?
A dataset has five-number summary: minimum = 121212, Q1=25Q1 = 25Q1=25, median = 404040, Q3=55Q3 = 55Q3=55, maximum = 808080. Determine the range of the dataset.
A dataset of 200 values has five-number summary: min=2 \text{min}=2min=2, Q1=5Q1=5Q1=5, median=7 \text{median}=7median=7, Q3=10Q3=10Q3=10, max=20 \text{max}=20max=20. Approximately how many values are below the median?
The five-number summary of a dataset is: minimum = 101010, Q1=20Q1 = 20Q1=20, median = 353535, Q3=50Q3 = 50Q3=50, maximum = 707070. Calculate the interquartile range.
A box and whisker plot has whiskers at 888 and 626262, and the box spans from 202020 to 505050. Calculate the lengths of the lower and upper whiskers.
Given the five-number summary: min=4 \text{min}=4min=4, Q1=8Q1=8Q1=8, median=12 \text{median}=12median=12, Q3=16Q3=16Q3=16, max=28 \text{max}=28max=28, describe the skewness of the data distribution.
A boxplot of exam scores shows the median is closer to Q1Q1Q1 than to Q3Q3Q3, and the upper whisker is longer than the lower whisker. Is the distribution skewed left or right? Explain.
Two boxplots represent heights of plants under Treatments A and B. Treatment A: Q1=15Q1=15Q1=15, median = 202020, Q3=25Q3=25Q3=25. Treatment B: Q1=18Q1=18Q1=18, median = 222222, Q3=24Q3=24Q3=24. Which treatment shows less variability?
Dataset A has five-number summary: min=5 \text{min}=5min=5, Q1=15Q1=15Q1=15, median=25 \text{median}=25median=25, Q3=35Q3=35Q3=35, max=45 \text{max}=45max=45. Dataset B has min=0 \text{min}=0min=0, Q1=10Q1=10Q1=10, median=20 \text{median}=20median=20, Q3=40Q3=40Q3=40, max=50 \text{max}=50max=50. Which dataset has greater variability? Justify using interquartile range.
A boxplot for daily sales shows min=50 \text{min}=50min=50, Q1=75Q1=75Q1=75, median = 100100100, Q3=150Q3=150Q3=150, max=300 \text{max}=300max=300. A data point at 350350350 lies beyond the upper whisker. Use the 1.5×IQR1.5\times IQR1.5×IQR rule to determine if 350350350 is an outlier.
For a dataset with five-number summary: min=3 \text{min}=3min=3, Q1=9Q1=9Q1=9, median=12 \text{median}=12median=12, Q3=18Q3=18Q3=18, max=30 \text{max}=30max=30, determine whether the value 353535 is an outlier using the 1.5×IQR1.5\times IQR1.5×IQR rule.
Previous
Question Type 3: Finding the quartiles using the cumulative frequency graph
Next
Question Type 5: Constructing box and whisker plots using cumulative frequency graphs or tables