Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Determine the equation of the line through (1,2)(1,2)(1,2) and (3,6)(3,6)(3,6).
Find the equation of the line passing through the points (4,0)(4,0)(4,0) and (3,1)(3,1)(3,1).
Find the line equation passing through (−2,5)(-2,5)(−2,5) and (4,−1)(4,-1)(4,−1).
Given q(x)=ax2+bx+1q(x)=ax^2+bx+1q(x)=ax2+bx+1 passes through (1,4)(1,4)(1,4) and (2,9)(2,9)(2,9), find aaa and bbb.
Find the quadratic p(x)=ax2+bx+cp(x)=ax^2+bx+cp(x)=ax2+bx+c through points (1,0)(1,0)(1,0), (2,3)(2,3)(2,3) and (3,8)(3,8)(3,8).
Given s(x)=ax2+bx−1s(x)=ax^2+bx-1s(x)=ax2+bx−1 and s(1)=2s(1)=2s(1)=2, s(2)=9s(2)=9s(2)=9, s(3)=20s(3)=20s(3)=20, find aaa, bbb.
Determine the quadratic function f(x)=ax2+bx+cf(x)=ax^2+bx+cf(x)=ax2+bx+c passing through (0,1)(0,1)(0,1), (1,4)(1,4)(1,4) and (2,9)(2,9)(2,9).
Find the quadratic f(x)=ax2+bx+cf(x)=ax^2+bx+cf(x)=ax2+bx+c satisfying f(1)=3f(1)=3f(1)=3, f(2)=8f(2)=8f(2)=8, and f(−1)=5f(-1)=5f(−1)=5.
Find r(x)=2x2+bx+cr(x)=2x^2+bx+cr(x)=2x2+bx+c given r(1)=5r(1)=5r(1)=5, r(2)=12r(2)=12r(2)=12, r(3)=23r(3)=23r(3)=23.
Find the quadratic h(x)=ax2+bx+ch(x)=ax^2+bx+ch(x)=ax2+bx+c passing through (0,−2)(0,-2)(0,−2), (1,1)(1,1)(1,1) and (3,7)(3,7)(3,7).
Determine the quadratic f(x)=ax2+bx+cf(x)=ax^2+bx+cf(x)=ax2+bx+c with c=3c=3c=3 passing through (1,6)(1,6)(1,6) and (2,11)(2,11)(2,11).
Previous
Question Type 2: Determining mathematical formulations for contextualized models such as the function, domain, range.
Next
Question Type 4: Finding parameters of exponential models using the initial condition