Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
With f(x)=5x3+9f(x)=5x^3+9f(x)=5x3+9 and g(x)=2x−1g(x)=2x-1g(x)=2x−1, find the composite function (f ∘ g)(x)(f\,\circ\,g)(x)(f∘g)(x).
Given the functions f(x)=5x3+9f(x)=5x^3+9f(x)=5x3+9 and g(x)=2x−1g(x)=2x-1g(x)=2x−1, calculate the composite function (g ∘ f)(x)(g\,\circ\,f)(x)(g∘f)(x).
Given f(x)=3x2−4f(x)=3x^2-4f(x)=3x2−4 and g(x)=xg(x)=\sqrt{x}g(x)=x, find (f∘g)(x)(f\circ g)(x)(f∘g)(x).
Let f(x)=3x2−4f(x)=3x^2-4f(x)=3x2−4 and g(x)=xg(x)=\sqrt{x}g(x)=x. Determine (g∘f)(x)(g\circ f)(x)(g∘f)(x).
Let f(x)=5x3+9f(x)=5x^3+9f(x)=5x3+9 and g(x)=x 5x exg(x)=x\,5^x\,e^xg(x)=x5xex. Compute the composite function (g∘f)(x)(g\circ f)(x)(g∘f)(x).
For f(x)=5x3+9f(x)=5x^3+9f(x)=5x3+9 and g(x)=x 5x exg(x)=x\,5^x\,e^xg(x)=x5xex, find the composite function (f∘g)(x)(f\circ g)(x)(f∘g)(x).
Let f(x)=sin(x)f(x)=\sin(x)f(x)=sin(x), g(x)=x2g(x)=x^2g(x)=x2 and h(x)=1x+1h(x)=\frac{1}{x+1}h(x)=x+11. Determine (h∘g∘f)(x)(h\circ g\circ f)(x)(h∘g∘f)(x).
With g(x)=x2+1g(x)=x^2+1g(x)=x2+1, h(x)=exh(x)=e^xh(x)=ex and f(x)=ln(x)f(x)=\ln(x)f(x)=ln(x), find the composite (h∘f∘g)(x)(h\circ f\circ g)(x)(h∘f∘g)(x).
Let g(x)=x2+1g(x)=x^2+1g(x)=x2+1, h(x)=exh(x)=e^xh(x)=ex and f(x)=ln(x)f(x)=\ln(x)f(x)=ln(x). Determine the triple composite (f∘h∘g)(x)(f\circ h\circ g)(x)(f∘h∘g)(x).
Given f(x)=5x3+9f(x)=5x^3+9f(x)=5x3+9, g(x)=x 5x exg(x)=x\,5^x\,e^xg(x)=x5xex and h(x)=3g(x)f(g(x))h(x)=3g(x)f\bigl(g(x)\bigr)h(x)=3g(x)f(g(x)), find the composite (h∘g)(x)(h\circ g)(x)(h∘g)(x).
Let f(x)=5x3+9f(x)=5x^3+9f(x)=5x3+9, g(x)=x 5x exg(x)=x\,5^x\,e^xg(x)=x5xex and h(x)=3g(x)f(g(x))h(x)=3g(x)f\bigl(g(x)\bigr)h(x)=3g(x)f(g(x)). Determine (h∘f)(x)(h\circ f)(x)(h∘f)(x).
Previous
Question Type 1: Finding composite functions given two functions
Next
Question Type 3: Finding the inverse function of simple functions