Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Evaluate (f∘g)(1)(f\circ g)(1)(f∘g)(1) for f(x)=6x2+3f(x)=6x^2+3f(x)=6x2+3 and g(x)=xexg(x)=x e^xg(x)=xex.
Let f(x)=xf(x)=\sqrt{x}f(x)=x and g(x)=x−3g(x)=x-3g(x)=x−3. Find (f∘g)(x)(f\circ g)(x)(f∘g)(x) and determine its domain.
Let f(x)=exf(x)=e^xf(x)=ex and g(x)=3x2g(x)=3x^2g(x)=3x2. Find both (f∘g)(x)(f\circ g)(x)(f∘g)(x) and (g∘f)(x)(g\circ f)(x)(g∘f)(x).
With the same functions f(x)=6x2+3f(x)=6x^2+3f(x)=6x2+3 and g(x)=xexg(x)=x e^xg(x)=xex, find (g∘f)(x)(g\circ f)(x)(g∘f)(x).
Given f(x)=6x2+3f(x)=6x^2+3f(x)=6x2+3 and g(x)=xexg(x)=x e^xg(x)=xex, find (f∘g)(x)(f\circ g)(x)(f∘g)(x).
Define f(x)=1x+2f(x)=\tfrac{1}{x+2}f(x)=x+21 and g(x)=x2g(x)=x^2g(x)=x2. Compute and simplify (g∘f)(x)(g\circ f)(x)(g∘f)(x), stating its domain.
Let f(x)=lnxf(x)=\ln xf(x)=lnx and g(x)=6x+5g(x)=6x+5g(x)=6x+5. Express (f∘g)(x)(f\circ g)(x)(f∘g)(x) and state its domain.
Given h(x)=ln(x2+1)h(x)=\ln(x^2+1)h(x)=ln(x2+1) and f(x)=x3f(x)=x^3f(x)=x3, find (h∘f)(x)(h\circ f)(x)(h∘f)(x) and (f∘h)(x)(f\circ h)(x)(f∘h)(x).
Given f(x)=xf(x)=\sqrt{x}f(x)=x and g(x)=x2−4x+3g(x)=x^2-4x+3g(x)=x2−4x+3, find (f∘g)(x)(f\circ g)(x)(f∘g)(x) and determine its domain.
Let f(x)=ax+bf(x)=ax+bf(x)=ax+b and g(x)=cx+dg(x)=cx+dg(x)=cx+d, where a,b,c,da,b,c,da,b,c,d are constants. Find expressions for (f∘g)(x)(f\circ g)(x)(f∘g)(x) and (g∘f)(x)(g\circ f)(x)(g∘f)(x) in terms of a,b,c,da,b,c,da,b,c,d.
Let f(x)=x1−xf(x)=\frac{x}{1-x}f(x)=1−xx, g(x)=x+4g(x)=x+4g(x)=x+4, and h(x)=2x−1h(x)=2x-1h(x)=2x−1. Express (f∘g∘h)(x)(f\circ g\circ h)(x)(f∘g∘h)(x) in simplest form.
Prove that (f∘g)−1=g−1∘f−1(f\circ g)^{-1}=g^{-1}\circ f^{-1}(f∘g)−1=g−1∘f−1 for f(x)=2x−3f(x)=2x-3f(x)=2x−3 and g(x)=5x+1g(x)=5x+1g(x)=5x+1 by explicit calculation.
Previous
No previous topic
Next
Question Type 2: Finding complex combination of composite functions given two or more functions