Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Determine the period of y=9cos(5x)+11y = 9\cos(5x) + 11y=9cos(5x)+11.
Find the frequency of y=7sin(4x)−6y = 7\sin(4x) - 6y=7sin(4x)−6.
Find the period of y=2sin(πx3)+1y = 2\sin\bigl(\frac{\pi x}{3}\bigr) + 1y=2sin(3πx)+1.
Find the amplitude and period of y=5sin(2x)+3y = 5\sin(2x) + 3y=5sin(2x)+3.
Compute the value of yyy when x=π8x = \frac{\pi}{8}x=8π for y=8cos(4x)+2y = 8\cos(4x) + 2y=8cos(4x)+2.
Determine the value of kkk such that y=3cos(kx−π3)+2y = 3\cos(kx - \frac{\pi}{3}) + 2y=3cos(kx−3π)+2 has period 6.
Find kkk so that y=5sin(kx)y = 5\sin(kx)y=5sin(kx) has frequency 4.
Given y=Acos(2x−π2)+5y = A\cos(2x - \frac{\pi}{2}) + 5y=Acos(2x−2π)+5, identify the vertical shift and phase shift.
For y=4cos(3x+π6)−1y = 4\cos\bigl(3x + \frac{\pi}{6}\bigr) - 1y=4cos(3x+6π)−1, find the period and phase shift.
Write a sinusoidal model of the form y=3sin(kx)−2y = 3\sin(kx) - 2y=3sin(kx)−2 with amplitude 3, period 4π4\pi4π, no phase shift, and vertical shift −2-2−2. Find kkk.
For y=6sin(x2+π4)y = 6\sin\bigl(\frac{x}{2} + \frac{\pi}{4}\bigr)y=6sin(2x+4π), find the period and angular frequency.
Determine the xxx-coordinates of the first positive peak of y=3cos(2x)+4y = 3\cos(2x) + 4y=3cos(2x)+4.
Previous
Question Type 15: Formulating sinusoidal models given descriptions
Next
Question Type 17: Using sinusoidal models to create graphs using technology