Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Find the position vector at t=2t=2t=2 for the trajectory r(t) = (3,4) + tigl(9 - t^2,\,11 + tigr).
Find the position vector at t=−1t=-1t=−1 for the trajectory r(t) = (1,0) + tigl(8 + t,\,2 - t^2igr).
Find the position vector at t=−2t=-2t=−2 for the trajectory r(t) = (3,4) + tigl(9 - t^2,\,11 + tigr).
Find the position vector at t=3t=3t=3 for the trajectory r(t) = (1,0) + tigl(8 + t,\,2 - t^2igr).
For the same trajectory r(t) = (1,0) + tigl(8 + t,\,2 - t^2igr), find v(t)v(t)v(t) and the speed at t=2t = 2t=2.
For the trajectory defined by r(t) = (1,0) + tigl(8 + t,\,2 - t^2igr), find the velocity vector v(t)v(t)v(t) and compute the speed at t=1t = 1t=1.
For r(t) = (1,0) + tigl(8 + t,\,2 - t^2igr), find all times when the motion is purely horizontal. (Motion is purely horizontal when y′(t)=0y'(t)=0y′(t)=0.)
For r(t) = (1,0) + tigl(8 + t,\,2 - t^2igr), find all times when the motion is purely vertical. (Motion is purely vertical when x′(t)=0x'(t)=0x′(t)=0.)
For r(t) = (3,4) + tigl(9 - t^2,\,11 + tigr), find all times when the motion is purely vertical. (Solve x′(t)=0x'(t)=0x′(t)=0.)
For r(t) = (3,4) + tigl(9 - t^2,\,11 + tigr), find the time when the motion is purely horizontal. (Solve y′(t)=0y'(t)=0y′(t)=0.)
For r(t) = (1,0) + tigl(8 + t,\,2 - t^2igr), determine whether there is any real time when the velocity components are equal, i.e. 2−3t2=8+2t .2-3t^2 = 8+2t\,.2−3t2=8+2t.
For r(t)=(3,4)+t(9−t2, 11+t)r(t) = (3,4) + t\bigl(9 - t^2,\,11 + t\bigr)r(t)=(3,4)+t(9−t2,11+t), find the speed at the time when the motion is purely horizontal.
Previous
Question Type 5: Finding the value of parameters such that two trajectories or objects would intersect
Next
Question Type 7: Finding the position of a specific object on a trajectory for a given value in time