Number and Algebra
Functions
Geometry and Trigonometry
Statistics and Probability
Calculus
Sketch the graph of y=(x−3)2y = (x - 3)^2y=(x−3)2.
Sketch the graph of y=x2+4y = x^2 + 4y=x2+4.
Sketch the graph of y=2x2−5y = 2x^2 - 5y=2x2−5.
Sketch the graph of y=−x2y = -x^2y=−x2.
Sketch the graph of y=(x+2)2+1y = (x + 2)^2 + 1y=(x+2)2+1.
Sketch the graph of y=−3(x−1)2y = -3(x - 1)^2y=−3(x−1)2.
Sketch the graph of y=12(x+3)2−2y = \tfrac12(x + 3)^2 - 2y=21(x+3)2−2.
Draw and label the graph of y=4(x−1)2−6y = 4(x - 1)^2 - 6y=4(x−1)2−6 using y=x2y = x^2y=x2 as the base curve.
Sketch the graph of y=−2(x+2)2+3y = -2(x + 2)^2 + 3y=−2(x+2)2+3.
Sketch the graph of y=3(2x−4)2+1y = 3(2x - 4)^2 + 1y=3(2x−4)2+1.
Given the curve y=x2−2y = x^2 - 2y=x2−2, sketch and label the graph of y=−12(x+1)2+4y = -\tfrac12(x + 1)^2 + 4y=−21(x+1)2+4 relative to it.
Let f(x)=x2f(x)=x^2f(x)=x2. Sketch the graph of g(x)=−2 f(x3−1)+5g(x)=-2\,f\bigl(\tfrac{x}{3}-1\bigr)+5g(x)=−2f(3x−1)+5, i.e. g(x)=−2(x3−1)2+5g(x)=-2\bigl(\tfrac{x}{3}-1\bigr)^2+5g(x)=−2(3x−1)2+5.
Previous
Question Type 4: Creating a description explaining function transformations
Next
No next topic