Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Evaluate the integral ∫dx1−(2x)2\displaystyle \int \frac{dx}{\sqrt{1 - (2x)^2}}∫1−(2x)2dx.
Evaluate the integral ∫dx1+(3x+2)2\displaystyle \int \frac{dx}{1 + (3x + 2)^2}∫1+(3x+2)2dx.
Evaluate the integral ∫dx(5x+2)2+9\displaystyle \int \frac{dx}{(5x + 2)^2 + 9}∫(5x+2)2+9dx.
Evaluate the integral ∫5 dx4+(2x−3)2\displaystyle \int \frac{5\,dx}{4 + (2x - 3)^2}∫4+(2x−3)25dx.
Evaluate the integral ∫dx4−(x−1)2\displaystyle \int \frac{dx}{\sqrt{4 - (x - 1)^2}}∫4−(x−1)2dx.
Evaluate the integral ∫dx2x−x2\displaystyle \int \frac{dx}{\sqrt{2x - x^2}}∫2x−x2dx.
Evaluate the integral ∫dx6x−x2\displaystyle \int \frac{dx}{\sqrt{6x - x^2}}∫6x−x2dx.
Evaluate the integral ∫3 dx4−9(x−1)2\displaystyle \int \frac{3\,dx}{\sqrt{4 - 9(x - 1)^2}}∫4−9(x−1)23dx.
Evaluate the integral ∫dx3−x2−2x\displaystyle \int \frac{dx}{\sqrt{3 - x^2 - 2x}}∫3−x2−2xdx.
Previous
Question Type 3: The derivatives of simple composites of inverse trigonometric functions
Next
Question Type 5: Integrating rational functions using partial fractions (linear factors)