Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Simplify (−2)3⋅4−2(-2)^3 \cdot 4^{-2}(−2)3⋅4−2
Simplify 34⋅3−231\dfrac{3^4 \cdot 3^{-2}}{3^1}3134⋅3−2
Simplify 50+5152\dfrac{5^0 + 5^1}{5^2}5250+51
Simplify (2523)2\bigl(\dfrac{2^5}{2^3}\bigr)^2(2325)2
Simplify 932⋅27−139^{\tfrac32} \cdot 27^{-\tfrac13}923⋅27−31
Expand and simplify (x2y−1)−2⋅x3(x^{2} y^{-1})^{-2} \cdot x^{3}(x2y−1)−2⋅x3
Simplify (a3b−2a−1b4)2\bigl(\tfrac{a^3 b^{-2}}{a^{-1} b^4}\bigr)^{2}(a−1b4a3b−2)2
Simplify 16x+18x\dfrac{16^{x+1}}{8^x}8x16x+1 and express the result as a power of 2
Solve for xxx: 2x⋅4x−2=322^{x} \cdot 4^{x-2} = 322x⋅4x−2=32
Solve for xxx: 42x−1=8x+24^{2x-1} = 8^{x+2}42x−1=8x+2
Solve for xxx: 52x−3=125x+125^{2x-3} = 125^{x+\tfrac12}52x−3=125x+21
Solve for xxx: (13)x=9x+1(\tfrac{1}{3})^x = 9^{x+1}(31)x=9x+1
Previous
Question Type 8: Using logarithms to solve equations with unknown exponents
Next
Question Type 10: Summarizing laws of logarithms