Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Expand log3(27x2)\log_3(27x^2)log3(27x2).
Express loga(b)\log_a(b)loga(b) in terms of natural logarithms.
Evaluate log4(32)\log_4(32)log4(32) by rewriting in base 2.
Expand ln(e3xy)\ln\bigl(\frac{e^3x}{\sqrt{y}}\bigr)ln(ye3x).
Condense log2(x)+3log2(y)−12log2(z)\log_2(x)+3\log_2(y)-\tfrac12\log_2(z)log2(x)+3log2(y)−21log2(z) into a single logarithm.
Solve log2(x2−4)=3\log_2(x^2-4)=3log2(x2−4)=3 for xxx.
Condense 4+log5(x)−2log5(y)4+\log_5(x)-2\log_5(y)4+log5(x)−2log5(y) into one logarithm.
Expand log7(xyz3)\log_7\bigl(\frac{\sqrt{xy}}{z^3}\bigr)log7(z3xy).
Solve log5(x)+log5(x−4)=1\log_5(x)+\log_5(x-4)=1log5(x)+log5(x−4)=1 for xxx.
Solve ln(x2−1)−ln(x+1)=ln(2)\ln(x^2-1)-\ln(x+1)=\ln(2)ln(x2−1)−ln(x+1)=ln(2) for xxx.
Solve log3(2x−1)=2+log3(x+1)\log_{3}(2x-1)=2+\log_{3}(x+1)log3(2x−1)=2+log3(x+1) for xxx.
Solve 2+log4(x)=ln(x)2+\log_{4}(x)=\ln(x)2+log4(x)=ln(x) for x>0x>0x>0.
Previous
Question Type 9: Summarizing laws of exponents
Next
No next topic