Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Given E(X)=−3E(X)=-3E(X)=−3 and Var(X)=2 \text{Var}(X)=2Var(X)=2, find Var(X+5) \text{Var}(X + 5)Var(X+5).
Given E(X)=1E(X)=1E(X)=1 and E(Y)=2E(Y)=2E(Y)=2, find E(4X−5Y+3)E(4X - 5Y + 3)E(4X−5Y+3).
Given Var(X)=4 \text{Var}(X)=4Var(X)=4, find Var(3X+1) \text{Var}(3X + 1)Var(3X+1).
Given E(X)=5E(X)=5E(X)=5, find E(3X−2)E(3X - 2)E(3X−2).
Given E(X)=2E(X)=2E(X)=2 and Var(X)=3 \text{Var}(X)=3Var(X)=3, find E(X2)E(X^2)E(X2).
Given extVar(X)=4 ext{Var}(X)=4extVar(X)=4, find the standard deviation of 0.5X0.5X0.5X.
Given E(X)=0E(X)=0E(X)=0 and Var(X)=1 \text{Var}(X)=1Var(X)=1, find Var((X+2)/3) \text{Var}\bigl((X+2)/3\bigr)Var((X+2)/3).
Given E(X)=5E(X)=5E(X)=5, E(Y)=−1E(Y)=-1E(Y)=−1, and Cov(X,Y)=2 \text{Cov}(X,Y)=2Cov(X,Y)=2, find E(XY)E(XY)E(XY).
Given E(X)=0.9E(X)=0.9E(X)=0.9 and E(X2)=0.7E(X^2)=0.7E(X2)=0.7, find Var(2X) \text{Var}(2X)Var(2X).
Given Var(X)=9 \text{Var}(X)=9Var(X)=9, Var(Y)=16 \text{Var}(Y)=16Var(Y)=16, and Cov(X,Y)=6 \text{Cov}(X,Y)=6Cov(X,Y)=6, find Var(X+Y) \text{Var}(X+Y)Var(X+Y).
Given Var(X)=9 \text{Var}(X)=9Var(X)=9, Var(Y)=16 \text{Var}(Y)=16Var(Y)=16, and Cov(X,Y)=6 \text{Cov}(X,Y)=6Cov(X,Y)=6, find Var(2X−3Y) \text{Var}(2X - 3Y)Var(2X−3Y).
Given Cov(X,Y)=5 \text{Cov}(X,Y)=5Cov(X,Y)=5, find Cov(2X−Y,3X+4Y) \text{Cov}(2X - Y,3X + 4Y)Cov(2X−Y,3X+4Y).
Previous
Question Type 7: Finding the variance for a given continuous distribution and PDF
Next
No next topic