Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Express log5(7)\log_5(7)log5(7) in terms of natural logarithms.
Express log8(18)\log_8(18)log8(18) in terms of log2(3)\log_2(3)log2(3).
Evaluate the expression 3log2(8)+2log4(16).\displaystyle \frac{3}{\log_2(8)}+\frac{2}{\log_4(16)}.log2(8)3+log4(16)2.
Simplify the expression 3log2(x)+logx(y)\displaystyle \frac{3}{\log_2(x)} + \log_x(y)log2(x)3+logx(y) into a form involving lnx\ln xlnx and lny\ln ylny.
Simplify the expression 2log5(7)−log7(25)\frac{2}{\log_5(7)}-\log_7(25)log5(7)2−log7(25) into a form involving natural logarithms.
Simplify log3(16)+2log4(3)\displaystyle \log_3(16) + \frac{2}{\log_4(3)}log3(16)+log4(3)2 into a single quotient of natural logarithms.
Simplify log2(9)−2log3(2)\displaystyle \log_2(9) - \frac{2}{\log_3(2)}log2(9)−log3(2)2 into an expression involving ln2\ln2ln2 and ln3\ln3ln3.
If log3(b)=4\log_3(b)=4log3(b)=4, evaluate log27(b)\log_{27}(b)log27(b).
Express log4(27)\log_4(27)log4(27) in terms of log2(3)\log_2(3)log2(3).
Solve for x>0x>0x>0, x≠1x\neq1x=1: 3log2(x)+logx(16)=5.\frac{3}{\log_2(x)}+\log_x(16)=5.log2(x)3+logx(16)=5.
Show that for a>0a>0a>0, b>0b>0b>0, a≠1a\neq1a=1, b≠1b\neq1b=1: loga(b) logb(a)=1.\log_a(b)\,\log_b(a)=1.loga(b)logb(a)=1.
Solve for x>0x>0x>0: log2(x)+log4(x)+log8(x)=6.\log_2(x)+\log_4(x)+\log_8(x)=6.log2(x)+log4(x)+log8(x)=6.
Solve for x>0x>0x>0, x≠1x\neq1x=1: logx(81)+4log3(x)=6.\log_x(81)+\frac{4}{\log_3(x)}=6.logx(81)+log3(x)4=6.
Previous
Question Type 6: Using logₐ(a) = 1 and logₐ(1) = 0
Next
Question Type 8: Using logarithms to solve equations with unknown exponents