Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Evaluate log9(1)+5\log_9(1) + 5log9(1)+5.
Rewrite 1+logb(a)1 + \log_b(a)1+logb(a) as a single logarithm.
Simplify 3+log6(1)3 + \log_6(1)3+log6(1).
Simplify log7(7)−log7(49)\log_7(7) - \log_7(49)log7(7)−log7(49).
Express 2+log3(7)2 + \log_3(7)2+log3(7) as a single logarithm.
Simplify 3+log2(5)3 + \log_2(5)3+log2(5) as a single logarithm.
Write 4+log10(k)4 + \log_{10}(k)4+log10(k) as a single base-10 logarithm.
Express log5(3)+2\log_5(3) + 2log5(3)+2 as a single logarithm.
Simplify −1+log2(8)-1 + \log_2(8)−1+log2(8).
Simplify 5−log4(2)5 - \log_4(2)5−log4(2) as a single logarithm.
Simplify log2(2)+log2(8)\log_2(2) + \log_2(8)log2(2)+log2(8) as a single logarithm and evaluate it.
Write 3−log7(2)3 - \log_7(2)3−log7(2) as a single logarithm.
Previous
Question Type 5: Simplifying expressions to a single logarithm
Next
Question Type 7: Using change of base formula