Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Simplify (a+bi)+(4−3i)(a+bi)+(4-3i)(a+bi)+(4−3i).
Expand (a+bi)2(a+bi)^2(a+bi)2 and write the result in the form x+yix+yix+yi.
Multiply (2+ai)(3−2i)(2+ai)(3-2i)(2+ai)(3−2i) and express the result in the form x+yix+yix+yi.
Find the conjugate of a−bia-bia−bi and show that (a−bi)(a+bi)(a-bi)(a+bi)(a−bi)(a+bi) is real.
Find all real values of aaa such that ∣a+2i∣=5|a+2i|=5∣a+2i∣=5.
Determine the real value of bbb such that the product (2+bi)(4−3i)(2+bi)(4-3i)(2+bi)(4−3i) is a real number.
Solve for real aaa and bbb if (a+bi)2=3−4i(a+bi)^2=3-4i(a+bi)2=3−4i.
Determine nonzero real aaa and bbb such that (a+bi)3(a+bi)^3(a+bi)3 is a real number.
Let z=a+biz=a+biz=a+bi and w=b+aiw=b+aiw=b+ai. If z2+w2=10iz^2+w^2=10iz2+w2=10i, find all real aaa and bbb.
Previous
Question Type 5: Applying multiple operations onto a complex number
Next
Question type 7: Multiplying and dividing complex numbers in Euler form