Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Simplify (2+i)−(5+3i)3+2i\frac{(2 + i) - (5 + 3i)}{3 + 2i}3+2i(2+i)−(5+3i) and express your answer in the form a+bia + bia+bi.
Find the complex conjugate of z=2−i3+4iz = \frac{2 - i}{3 + 4i}z=3+4i2−i and simplify the result to the form a+bia + bia+bi.
Compute (3−4i)(1+i)+(2+i)2(3 - 4i)(1 + i) + (2 + i)^2(3−4i)(1+i)+(2+i)2 and express your answer in the form a+bia + bia+bi.
Given z=(1+2i)3z = (1 + 2i)^3z=(1+2i)3, expand and express zzz in the form a+bia + bia+bi.
Divide 5+2i5 + 2i5+2i by 1−2i1 - 2i1−2i, then subtract iii, and express the result in the form a+bia + bia+bi.
Simplify (2+3i−1+4i)⋅(1−2i)\left(\frac{2 + 3i}{-1 + 4i}\right) \cdot (1 - 2i)(−1+4i2+3i)⋅(1−2i) and express your answer in the form a+bia + bia+bi.
Find the modulus and argument (in radians) of z=2+3i1−iz = \frac{2 + 3i}{1 - i}z=1−i2+3i.
Given z=(1+i)22−i+3iz = \frac{(1 + i)^2}{2 - i} + 3iz=2−i(1+i)2+3i, simplify zzz and express it in the form a+bia + bia+bi.
On an Argand diagram, represent the complex number z=(1−i2+i)2z = \left(\frac{1 - i}{2 + i}\right)^2z=(2+i1−i)2 and find its modulus and argument.
Simplify (2+i)3−(1−i)31+i\frac{(2 + i)^3 - (1 - i)^3}{1 + i}1+i(2+i)3−(1−i)3 and express your answer in the form a+bia + bia+bi.
Previous
Question Type 4: Multiplying and dividing complex numbers in Cartesian form
Next
Question Type 6: Performing operations on variables of complex numbers