Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Express tanx\tan xtanx in terms of sinx\sin xsinx and cosx\cos xcosx.
Express cscx\csc xcscx in terms of sinx\sin xsinx only.
Simplify secx−cosxtanx\displaystyle\frac{\sec x-\cos x}{\tan x}tanxsecx−cosx into a single expression in terms of sinx\sin xsinx and cosx\cos xcosx.
Simplify 1+sinxcosx\displaystyle\frac{1+\sin x}{\cos x}cosx1+sinx and show that it equals tanx+secx\tan x+\sec xtanx+secx.
Rearrange 1+tan2x=sec2x1+\tan^2 x=\sec^2 x1+tan2x=sec2x to express tan2x\tan^2 xtan2x in terms of cosx\cos xcosx only.
Express tanx\tan xtanx in terms of sinx\sin xsinx only, using cosx=1−sin2x \cos x=\sqrt{1-\sin^2 x}\,cosx=1−sin2x.
Simplify sin2x−cos2xsinxcosx\displaystyle\frac{\sin^2 x-\cos^2 x}{\sin x\cos x}sinxcosxsin2x−cos2x to express it in terms of tanx\tan xtanx and cotx\cot xcotx.
Given 2sinx+3cosx=02\sin x+\sqrt3\cos x=02sinx+3cosx=0, solve for tanx\tan xtanx.
Express tanx\tan xtanx in terms of secx\sec xsecx only by rearranging 1+tan2x=sec2x1+\tan^2 x=\sec^2 x1+tan2x=sec2x.
Simplify (secx+tanx)(secx−tanx)(\sec x+\tan x)(\sec x-\tan x)(secx+tanx)(secx−tanx) into a constant, expressing each function in terms of sinx\sin xsinx and cosx\cos xcosx.
Given tanx+secx=k\tan x+\sec x=ktanx+secx=k, express sinx\sin xsinx in terms of kkk.
Previous
Question Type 2: Given an equation of a line, finding the angle of elevation
Next
Question Type 4: Substituting simple values into equations to find exact answers