Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Find the intersection point of the planes x+y+z=6x + y + z = 6x+y+z=6, 2x−y+3z=142x - y + 3z = 142x−y+3z=14, and −x+4y+z=2-x + 4y + z = 2−x+4y+z=2.
Solve for the common point of the planes 2x+3y−z=52x + 3y - z = 52x+3y−z=5, x−y+2z=3x - y + 2z = 3x−y+2z=3, and 4x+y+z=94x + y + z = 94x+y+z=9.
Determine the intersection point of the planes x−2y+z=1x - 2y + z = 1x−2y+z=1, 3x+y−z=43x + y - z = 43x+y−z=4, and 2x−y+2z=52x - y + 2z = 52x−y+2z=5.
Find the common point of the planes 4x+y−z=84x + y - z = 84x+y−z=8, −2x+3y+2z=1-2x + 3y + 2z = 1−2x+3y+2z=1, and x+y+z=6x + y + z = 6x+y+z=6.
Find the point where the planes x+2y+3z=13x + 2y + 3z = 13x+2y+3z=13, 2x−y+z=32x - y + z = 32x−y+z=3, and 3x+y−2z=−13x + y - 2z = -13x+y−2z=−1 intersect.
Solve for the unique intersection of x+y+z=1x + y + z = 1x+y+z=1, 2x+3y+4z=42x + 3y + 4z = 42x+3y+4z=4, and 3x−2y+z=23x - 2y + z = 23x−2y+z=2.
Determine the intersection of the planes 5x−2y+z=35x - 2y + z = 35x−2y+z=3, x+y−3z=−2x + y - 3z = -2x+y−3z=−2, and 2x−y+4z=72x - y + 4z = 72x−y+4z=7.
Solve for the intersection of the planes x−y+2z=0x - y + 2z = 0x−y+2z=0, 2x+3y−z=92x + 3y - z = 92x+3y−z=9, and −3x+y+4z=5-3x + y + 4z = 5−3x+y+4z=5.
Find the unique solution of the system given by 2x−y+3z=42x - y + 3z = 42x−y+3z=4, −x+4y−z=−5-x + 4y - z = -5−x+4y−z=−5, and 3x+y+2z=73x + y + 2z = 73x+y+2z=7.
Find the intersection point of the planes 4x−y+2z=64x - y + 2z = 64x−y+2z=6, −x+2y−3z=−4-x + 2y - 3z = -4−x+2y−3z=−4, and 3x+y+z=83x + y + z = 83x+y+z=8.
Solve for the intersection of the planes 3x+2y−z=43x + 2y - z = 43x+2y−z=4, 2x−y+4z=52x - y + 4z = 52x−y+4z=5, and x+3y+z=6x + 3y + z = 6x+3y+z=6.
Find the intersection of the planes 3x−2y+z=13x - 2y + z = 13x−2y+z=1, x+y−4z=2x + y - 4z = 2x+y−4z=2, and 2x−3y+5z=32x - 3y + 5z = 32x−3y+5z=3.
Previous
Question Type 2: Finding the intersection of two planes
Next
Question Type 4: Calculating the angle between a line and a plane