Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Using a table of values at x=0.1x=0.1x=0.1, 0.010.010.01, 0.0010.0010.001, 0.00010.00010.0001, evaluate g(x)=11+xg(x)=\frac{1}{1+x}g(x)=1+x1. Describe the behavior of g(x)g(x)g(x) as x→0x\to0x→0.
Construct a table of values for f(x)=1xf(x)=\frac{1}{x}f(x)=x1 at x=1x=1x=1, 0.10.10.1, 0.010.010.01, 0.0010.0010.001. Compute the values and describe the trend as xxx approaches 0 from the positive side.
Evaluate k(x)=sinxxk(x)=\frac{\sin x}{x}k(x)=xsinx at x=0.1x=0.1x=0.1, 0.010.010.01, 0.0010.0010.001, 0.00010.00010.0001 using a table, and estimate limx→0sinxx\lim_{x\to0}\frac{\sin x}{x}limx→0xsinx.
Construct a table for m(x)=tanxxm(x)=\frac{\tan x}{x}m(x)=xtanx at x=0.1x=0.1x=0.1, 0.010.010.01, 0.0010.0010.001, 0.00010.00010.0001 and use it to estimate limx→0tanxx\lim_{x\to0}\frac{\tan x}{x}limx→0xtanx.
Fill in a table for h(x)=(1+x)1/xh(x)=(1+x)^{1/x}h(x)=(1+x)1/x at x=0.1x=0.1x=0.1, 0.010.010.01, 0.0010.0010.001, 0.00010.00010.0001. Use your results to estimate limx→0(1+x)1/x\lim_{x\to0}(1+x)^{1/x}limx→0(1+x)1/x.
Construct a table for j(x)=ex−1xj(x)=\frac{e^x-1}{x}j(x)=xex−1 at x=0.1x=0.1x=0.1, 0.010.010.01, 0.0010.0010.001, 0.00010.00010.0001. Use it to approximate limx→0ex−1x\lim_{x\to0}\frac{e^x-1}{x}limx→0xex−1.
Use a table with x=0.1x=0.1x=0.1, 0.010.010.01, 0.0010.0010.001, 0.00010.00010.0001 to evaluate i(x)=ln(1+x)xi(x)=\frac{\ln(1+x)}{x}i(x)=xln(1+x). Estimate the limit as x→0x\to0x→0.
Use a table of values at x=0.1x=0.1x=0.1, 0.010.010.01, 0.0010.0010.001, 0.00010.00010.0001 to compute l(x)=1−cosxx2l(x)=\frac{1-\cos x}{x^2}l(x)=x21−cosx and estimate limx→01−cosxx2\lim_{x\to0}\frac{1-\cos x}{x^2}limx→0x21−cosx.
Construct a table for q(x)=2x−1xq(x)=\frac{2^x-1}{x}q(x)=x2x−1 at x=0.1x=0.1x=0.1, 0.010.010.01, 0.0010.0010.001, 0.00010.00010.0001. Use it to estimate limx→02x−1x\lim_{x\to0}\frac{2^x-1}{x}limx→0x2x−1.
Construct a table for o(x)=ex−1−xx2o(x)=\frac{e^x-1-x}{x^2}o(x)=x2ex−1−x at x=0.1x=0.1x=0.1, 0.010.010.01, 0.0010.0010.001, 0.00010.00010.0001. Use it to estimate limx→0ex−1−xx2\lim_{x\to0}\frac{e^x-1-x}{x^2}limx→0x2ex−1−x.
Using a table of values at x=0.1x=0.1x=0.1, 0.010.010.01, 0.0010.0010.001, 0.00010.00010.0001, evaluate p(x)=(1+2x)1/xp(x)=(1+2x)^{1/x}p(x)=(1+2x)1/x and estimate limx→0(1+2x)1/x\lim_{x\to0}(1+2x)^{1/x}limx→0(1+2x)1/x.
Previous
Question Type 1: Drawing graphs of specific functions to determine their limits at specific places
Next
No next topic