Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Starting from the left-hand side, prove that 11a+1b=aba+b\dfrac{1}{\frac{1}{a} + \frac{1}{b}} = \dfrac{ab}{a+b}a1+b11=a+bab.
Starting from the right-hand side, prove that am⋅an=am+na^m \cdot a^n = a^{m+n}am⋅an=am+n where a≠0a \neq 0a=0 and m,nm, nm,n are positive integers.
Starting from the right-hand side, prove that 1a+1b=a+bab\frac{1}{a} + \frac{1}{b} = \frac{a+b}{ab}a1+b1=aba+b.
Starting from the right-hand side, prove that logba=lnalnb\log_b a = \dfrac{\ln a}{\ln b}logba=lnblna for a,b>0a, b > 0a,b>0, b≠1b \neq 1b=1.
Starting from the right-hand side, prove that 1+r+r2+⋯+rn=rn+1−1r−11 + r + r^2 + \dots + r^n = \dfrac{r^{n+1} - 1}{r - 1}1+r+r2+⋯+rn=r−1rn+1−1 for r≠1r\neq 1r=1.
Starting from the right-hand side, prove that (a+b)2=a2+2ab+b2(a+b)^2 = a^2 + 2ab + b^2(a+b)2=a2+2ab+b2.
Previous
Question Type 1: Simple equation proofs
Next
Question Type 3: Verifying the proof