Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Prove that (n+1)!n!=n+1\dfrac{(n+1)!}{n!} = n+1n!(n+1)!=n+1, for integer n≥0n\ge0n≥0.
Show that a2−b2a−b=a+b\frac{a^2 - b^2}{a - b} = a + ba−ba2−b2=a+b, for a≠ba \neq ba=b.
Prove that 1m+1+1m2+m=1m\frac{1}{m+1} + \frac{1}{m^2 + m} = \frac{1}{m}m+11+m2+m1=m1, where m≠0,−1m \neq 0,-1m=0,−1.
Show that 1x+h−1x=−hx(x+h)\displaystyle \frac{1}{x+h} - \frac{1}{x} = -\frac{h}{x(x+h)}x+h1−x1=−x(x+h)h, for x≠0x\neq0x=0 and x+h≠0x+h\neq0x+h=0.
Prove that x3−y3x−y=x2+xy+y2\frac{x^3 - y^3}{x - y} = x^2 + xy + y^2x−yx3−y3=x2+xy+y2, for x≠yx \neq yx=y.
Prove that 1x−1−1x+1=2x2−1\displaystyle \frac{1}{x - 1} - \frac{1}{x + 1} = \frac{2}{x^2 - 1}x−11−x+11=x2−12, for x≠±1x \neq \pm1x=±1.
Verify that 1+x1−x−1−x1+x=4x1−x2\displaystyle \frac{1+x}{1-x} - \frac{1-x}{1+x} = \frac{4x}{1-x^2}1−x1+x−1+x1−x=1−x24x, for x≠±1x\neq \pm1x=±1.
Show that (1+1x)2−(1−1x)2=4x\bigl(1 + \tfrac{1}{x}\bigr)^2 - \bigl(1 - \tfrac{1}{x}\bigr)^2 = \tfrac{4}{x}(1+x1)2−(1−x1)2=x4, for x≠0x \neq 0x=0.
Show that 1a+1b1a−1b=a+ba−b\displaystyle \frac{\frac1a + \frac1b}{\frac1a - \frac1b} = \frac{a+b}{a-b}a1−b1a1+b1=a−ba+b, for a,b≠0a,b\neq 0a,b=0 and a≠ba\neq ba=b.
Show that 1x+y+1x−y=2xx−y\displaystyle \frac{1}{\sqrt{x}+\sqrt{y}} + \frac{1}{\sqrt{x}-\sqrt{y}} = \frac{2\sqrt{x}}{x-y}x+y1+x−y1=x−y2x, for x≠yx\neq yx=y, x,y>0x,y>0x,y>0.
Prove that a−b=a−ba+b\sqrt{a} - \sqrt{b} = \dfrac{a - b}{\sqrt{a} + \sqrt{b}}a−b=a+ba−b, for a,b>0a,b>0a,b>0.
Prove that x2+x+1x+2=x−1+3x+2\displaystyle \frac{x^2 + x + 1}{x+2} = x-1 + \frac{3}{x+2}x+2x2+x+1=x−1+x+23, for x≠−2x\neq -2x=−2.
Previous
No previous topic
Next
Question Type 2: Proving starting from the right-hand side