Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Given dydx=3x2\frac{dy}{dx}=3x^2dxdy=3x2 and y(0)=5y(0)=5y(0)=5, find the particular solution y(x)y(x)y(x).
Given dydx=5x4\frac{dy}{dx}=5x^4dxdy=5x4 and y(1)=3y(1)=3y(1)=3, find y(x)y(x)y(x).
Find y(x)y(x)y(x) if dydx=6x2−4x+1\frac{dy}{dx}=6x^2-4x+1dxdy=6x2−4x+1 and y(1)=5y(1)=5y(1)=5.
If dydx=4x3+2x\frac{dy}{dx}=4x^3+2xdxdy=4x3+2x and y(0)=2y(0)=2y(0)=2, determine y(x)y(x)y(x).
Given dydx=3x2+4x+6\frac{dy}{dx}=3x^2+4x+6dxdy=3x2+4x+6 and y(−2)=7y(-2)=7y(−2)=7, find y(x)y(x)y(x).
Given dydx=2x3−3x2+4x−5\frac{dy}{dx}=2x^3-3x^2+4x-5dxdy=2x3−3x2+4x−5 with y(2)=1y(2)=1y(2)=1, find the constant CCC and the expression for y(x)y(x)y(x).
Find the particular solution for dydx=7x3+9x2−x+8\frac{dy}{dx}=7x^3+9x^2-x+8dxdy=7x3+9x2−x+8 with y(1)=10y(1)=10y(1)=10.
Find the particular solution y(x)y(x)y(x) given dydx=8x4+2x3+11x+3\frac{dy}{dx}=8x^4+2x^3+11x+3dxdy=8x4+2x3+11x+3 and the condition y(1)=9y(1)=9y(1)=9.
Determine y(x)y(x)y(x) if dydx=−3x4+x2−2\frac{dy}{dx}=-3x^4+x^2-2dxdy=−3x4+x2−2 and y(0)=4y(0)=4y(0)=4.
If dydx=x5−2x3+x\frac{dy}{dx}=x^5-2x^3+xdxdy=x5−2x3+x and y(−1)=0y(-1)=0y(−1)=0, find y(x)y(x)y(x).
If dydx=5x4−x3+2x2−x+1\frac{dy}{dx}=5x^4-x^3+2x^2-x+1dxdy=5x4−x3+2x2−x+1 and y(0)=−1y(0)=-1y(0)=−1, determine y(x)y(x)y(x).
Find y(x)y(x)y(x) given dydx=2x6−x4+3x2−5\frac{dy}{dx}=2x^6-x^4+3x^2-5dxdy=2x6−x4+3x2−5 and y(1)=0y(1)=0y(1)=0.
Previous
Question Type 1: Integrating a polynomial without boundary conditions
Next
Question Type 3: Calculating the area between a polynomial in the positive section and the x axis