Number and Algebra
Functions
Geometry & Trigonometry
Statistics & Probability
Calculus
Find the function y=asin(bx)y=a\sin(bx)y=asin(bx) that has amplitude 999 and period π\piπ.
A sine wave has amplitude 999, period π\piπ, and midline y=1y=1y=1. The first maximum of the function for x>0x > 0x>0 occurs at x=π4x=\frac{\pi}{4}x=4π.
Find the equation of the sine wave in the form y=asin(b(x+c))+dy= a\sin\bigl(b(x+c)\bigr)+dy=asin(b(x+c))+d, where a,b,d>0a, b, d > 0a,b,d>0.
Find the equation of the sine curve y=asin(b(x+c))+dy=a\sin\bigl(b(x+c)\bigr)+dy=asin(b(x+c))+d, where a,b>0a, b > 0a,b>0, that has amplitude 999, period π\piπ, a maximum at x=π12x=\frac{\pi}{12}x=12π and a minimum at x=7π12x=\frac{7\pi}{12}x=127π. Assume the curve oscillates about the xxx-axis.
Write down y=asin(bx)+dy=a\sin(bx)+dy=asin(bx)+d with amplitude 999, period π\piπ, and a vertical shift of 555 units up.
Determine the equation y=asin(b(x+c))+dy=a\sin\bigl(b(x+c)\bigr)+dy=asin(b(x+c))+d for a wave with amplitude 999, period π\piπ, midline y=−3y=-3y=−3, and rising through the midline at x=π8x=\frac{\pi}{8}x=8π.
Determine the equation of the function y=asin(b(x+c))+dy=a\sin\bigl(b(x+c)\bigr)+dy=asin(b(x+c))+d with amplitude 999, period π\piπ, a vertical shift 222, and intersecting its midline decreasing at x=π6x=\frac{\pi}{6}x=6π.
Find the equation y=asin(b(x+c))y=a\sin\bigl(b(x+c)\bigr)y=asin(b(x+c)) with amplitude 999, period π\piπ, and a phase shift of π3\frac{\pi}{3}3π to the right.
Find y=asin(b(x+c))+dy= a\sin\bigl(b(x+c)\bigr)+dy=asin(b(x+c))+d with amplitude 999, period π\piπ, a phase shift of π6\frac{\pi}{6}6π to the right, and a vertical shift of −2-2−2.
Find the equation of the sine function y=asin(b(x+c))+dy=a\sin\bigl(b(x+c)\bigr)+dy=asin(b(x+c))+d with amplitude 666, period π\piπ, that passes through the points (π6,4)(\frac{\pi}{6},4)(6π,4) and (π3,−2)(\frac{\pi}{3},-2)(3π,−2).
Find the equation of the function y=asin(b(x+c))+dy=a\sin\bigl(b(x+c)\bigr)+dy=asin(b(x+c))+d given: amplitude 999, period πππ, midline y=0y=0y=0, minimum at x=0x=0x=0, and it passes through the midline going up at x=π4x=\frac{π}{4}x=4π.
Determine y=asin(b(x+c))+dy=a\sin\bigl(b(x+c)\bigr)+dy=asin(b(x+c))+d given amplitude 999, period π\piπ, vertical shift −1-1−1, and its first positive peak at x=π8x=\tfrac{\pi}{8}x=8π.
Determine y=asin(b(x+c))y=a\sin\bigl(b(x+c)\bigr)y=asin(b(x+c)) with amplitude 999, period π\piπ, and a phase shift of π4\frac{\pi}{4}4π to the left.
Previous
Question Type 1: From graphs of trigonometric functions, finding the amplitude and period of the trigonometric curves
Next
Question Type 3: Applying and describing transformations applied to trigonometric function